
- •Общие сведения об электротехнических материалах.
- •2. Виды связи.
- •3. Строение и дефекты твердых тел.
- •Классификация веществ по электрическим свойствам.
- •Классификация веществ по магнитным свойствам.
- •7. Поляризация диэлектриков. Диэлектрик в электрическом поле.
- •8. Поляризация диэлектриков и диэлектрическая проницаемость.
- •9. Основные виды поляризации диэлектриков.
- •10. Классификация диэлектриков по виду поляризации.
- •11. Электропроводность диэлектриков.
- •12. Электропроводность газов.
- •13. Электропроводность жидкостей.
- •14. Электропроводность твердых диэлектриков.
- •15. Диэлектрические потери.
- •16. Виды диэлектрических потерь в электроизоляционных материалах.
- •17. Диэлектрические потери в газах.
- •18. Диэлектрические потери в жидких диэлектриках.
- •19. Диэлектрические потери в твердых диэлектриках.
- •20. Пробой диэлектриков. Общая характеристика явления пробоя.
- •21. Пробой газов.
- •22. Пробой жидких диэлектриков.
- •23. Электрический пробой макроскопически однородных твердых диэлектриков.
- •24. Электрический пробой неоднородных твердых диэлектриков.
- •25. Тепловой пробой твердых диэлектриков.
- •26. Электрохимический пробой твердых диэлектриков.
- •27. Влажностные свойства диэлектриков.
- •28. Влажность электроизоляционных материалов.
- •29. Влагопроницаемость электроизоляционных материалов.
- •30. Прочность диэлектрических материалов при растяжении, сжатии и изгибе.
- •31. Хрупкость диэлектрических материалов.
- •32. Вязкость диэлектрических материалов.
- •33. Нагревостойкость диэлектриков. Классы нагревостойкости.
- •34. Холодостойкость диэлектриков.
- •35. Теплопроводность диэлектриков.
- •36. Тепловое расширение диэлектриков.
- •37. Химические свойства диэлектриков.
- •38. Воздействие на электротехнические материалы излучений высокой энергии.
- •39. Проводниковые материалы и их классификация.
- •40. Свойства проводниковых материалов.
- •41. Удельная проводимость и удельное сопротивление проводника.
- •42. Температурный коэфициент удельного сопротивления металлов.
- •43. Изменение удельного сопротивления металлов при плавлении.
- •44. Удельное сопротивление сплавов.
- •45. Теплопроводность металлов. Закон Видемана-Франца-Лоренца.
- •46. ТермоЭдс металлов.
- •47. Температурный коэфициент линейного расширения проводников.
- •48. Работа выхода электрона из металла.
- •49. Требования, предъявляемые к проводниковым материалам.
- •50. Различные типы проводниковых материалов, их достоинства и недостатки, область применения.
- •51. Сверхпроводники.
- •52. Техническое использование явления сверхпроводимости.
- •53. Криопроводники.
- •54. Материалы криопроводников и техническое использование криопроводимости
- •55. Полупроводниковые материалы.
- •56. Электропроводность полупроводников.
- •57. Собственные полупроводники.
- •58. Примесные полупроводники.
- •59. Доноры и акцепторы.
- •60. Основные и неосновные носители заряда.
- •61. Примеси замещения. Ковалентные структуры типа алмаза.
- •62. Ковалентные полупроводниковые соединения.
- •63. Полупроводники с ионными решетками.
- •64. Примеси внедрения.
- •65. Влияние тепловой энергии на электропроводность полупроводников.
- •67. Воздействие света на электропроводность полупроводников.
- •68. Влияние сильных электрических полей на электропроводность полупроводников.
- •69. Полупроводниковые приборы и область их использования.
- •70. Принцип действия полупроводникового диода.
- •71. Принцип действия транзистора.
- •72. Магнитные материалы.
- •73. Диамагнитные материалы.
- •74. Парамагнитные материалы.
- •75. Ферромагнитные материалы.
- •76. Антиферромагнитные материалы.
- •77. Ферримагнитные материалы.
- •78. Метамагнитные материалы.
- •79. Магнитнотвердые и магнитномягкие материалы и их область применения в электротехнике.
- •80. Основные показатели свойств магнитных материалов.
- •81. Процесс намагничивания магнитных материалов.
- •82. Основные виды магнитных потерь.
- •83.Свойства и область применения технически чистого железа, а также листовых электротехнических сталей с разным содержанием кремния.
- •85. Свойства и область применения сплавов со специальными свойствами (термокомпенсационные сплавы, сплавы для изготовления постоянных магнитов на основе металлов)
- •86. Сплавы на основе ферритов для изготовления постоянных магнитов, их достоинства и недостатки.
- •87. Состав и область применения аустенитных и нержавеющих сталей в электротехнике.
- •88. Состав и область применения конструкционных сталей в электротехнике
- •89. Магнитодиэлектрики.
- •90. Состав и область применения сплавов с высокой магнитострикцией.
- •91. Состав и область применения конструкционных чугунов в электротехнике.
- •92. Технология изготовления ферритов.
90. Состав и область применения сплавов с высокой магнитострикцией.
Сплавы с высокой магнитострикцией – это системы Fe-Pt, Fe-Co, Fe-Al. Изменения линейного размера ∆l/l образцов материалов при продольной магнитострикции, положительны и лежат в пределах (40-120)10-6. В качестве магнитострикционных материалов применяются также чистый никель, обладающий большой отрицательной магнитострикцией, никель-кобальтовые сплавы, некоторые марки пермаллоев и различные ферриты. Явление магнитострикции используется в генераторах звуковых и ультразвуковых колебаний. Магнитострикционные вибраторы применяются в технологических установках по обработке ультразвуком хрупких и твердых материалов, в дефектоскопах, а также в устройствах преобразования механических колебаний в электрические и т. п.
91. Состав и область применения конструкционных чугунов в электротехнике.
Эти материалы, применяемые в электромашиностроении, аппаратостроении, приборостроении, должны отличаться высокими механическими свойствами и достаточно широкими технологическими возможностями. В отношении магнитных свойств их можно разделить на материалы магнитные и материалы немагнитные. К первым могут быть отнесены серый чугун, углеродистые и легированные стали, ко вторым - немагнитные стали и немагнитный чугун.
Серый чугун. Содержит 3,2—3,5 % углерода, кремний, марганец, фосфор, серу. Предел прочности при изгибе серого чугуна составляет 200-450 МПа. Серый чугун применяется для отливок корпусов электрических машин, крепежных деталей, плит и пр.
Немагнитный чугун. Употребляется в тех случаях, когда наличие магнитных свойств в конструкционном материале может повредить работе прибора или аппарата. Широко применяемым типом немагнитного материала является чугун, содержащий в своем составе никель и марганец, которые обеспечивают аустенитную структуру. Немагнитный чугун используют при изготовлении крышек, кожухов, втулок масляных выключателей, обойм силовых трансформаторов, кожухов сварочных трансформаторов и т.д.
92. Технология изготовления ферритов.
Технология изготовления ферритов оказывает весьма существенное влияние на свойства готовых изделий. Технологический процесс производства ферритовых изделий вкратце сводится к тому, что предварительно получают ферритовый порошок, состоящий из тонко измельченных, тщательно перемешанных и предварительно обожженных оксидов соответствующих металлов. В него добавляют пластификатор - обычно раствор поливинилового спирта, и из полученной массы прессуют под большим давлением изделия требуемой формы. Изделия подвергают обжигу при температуре 1100-1400 °С. При этом происходит спекание и образование твердых растворов ферритов. Обжиг должен производиться обязательно в окислительной среде (обычно в воздухе). Присутствие даже в небольшом количестве водорода в рабочем пространстве печи может вызвать частичное восстановление оксидов, что приведет к резкому увеличению магнитных потерь. Усадка ферритов при обжиге может достигать 20 %. Ферриты - твердые и хрупкие материалы, не позволяющие производить обработку резанием и допускающие только шлифовку и полировку.