- •Вопрос 1. Предмет исследования и основные задачи теории принятия решений
- •Вопрос 2. Основные понятия теории принятия решений: проблема, лпр, цель, операция, модель, альтернатива, критерий, наилучшее решение
- •Вопрос 3. Классификация задач принятия решений
- •Вопрос 4. Краткая характеристика и экономическое содержание оптимизационных задач теории принятия решений. Линейные и нелинейные задачи оптимизации
- •Вопрос 5. Характеристика и примеры применения задач целочисленного линейного программирования в экономике и менеджменте
- •Вопрос 6. Задача о распределении бюджета как пример задач целочисленного линейного программирования. Использование логических условий и формирование зависимых решений
- •Вопрос 7. Сравнительная характеристика ситуаций определенности, риска и неопределенности в менеджменте. Основные виды неопределенности
- •Вопрос 8. Понятие о теории игр. Классификация игр.
- •Вопрос 9. Общая характеристика матричных игр с нулевой суммой. Понятие о стратегиях, платежной матрице и цене игры.
- •Вопрос 10. Решение матричных игр методом минимакса
- •Вопрос 11. Решение игр без седловых точек. Понятие о смешанных стратегиях и алгоритм определения средних выигрышей игроков
- •Вопрос 12. Определение оптимальных смешанных стратегий в играх без седловых точек
- •Вопрос 13. Понятие об играх с природой. Матрицы выигрышей и рисков
- •Вопрос 14. Определение оптимальных стратегий при известных вероятностях состояний природы (критерий оптимизации ожидаемого выигрыша)
- •Вопрос 15. Поиск оптимальных стратегий для игр с природой в условиях неопределённости (критерии Вальда, Сэвиджа, Гурвица)
- •Вопрос 16. Оценка целесообразности проведения эксперимента в играх с природой в условиях неопределенности
- •Вопрос 17. Многоэтапные процессы принятия решений и использование дерева решений
- •Вопрос 19. Понятие о сетевых моделях. Классификация событий и операцый сетевых графиков.
- •Вопрос 20. Правила и процедура построения сетевых графиков.
- •Вопрос 21. Понятие и алгоритм расчета критического пути сетевого графика
- •Вопрос 22. Назначение и основные виды оптимизации сетевых графиков
- •Оптимизация комплекса операций по стоимости - ставится задача минимизации стоимости проекта при фиксированном сроке его выполнения за счет увеличения времени выполнения отдельных работ.
- •Вопрос 23. Оптимизация времени выполнения проекта (комплекса работ)
- •Вопрос 24. Оптимизация стоимости проекта при фиксированном сроке его выполнения
- •Вопрос 25. Общая формулировка и примеры задач о потоках в сетях
- •Задача о потоке минимальной стоимости.
- •Задача о кратчайшем маршруте
- •Вопрос 26. Формулировка, экономическое содержание и алгоритм решения задачи о максимальном потоке
- •Вопрос 27. Экономическое содержание и алгоритм решения задачи о потоке минимальной стоимости
- •Вопрос 28. Задача о кратчайшем маршруте
- •Вопрос 29. Понятие о методе pert. Определение вероятностных характеристик сетевого графика в условиях неопределенности составляющих его работ
- •Расчет ожидаемой продолжительности времени выполнения проекта
- •Вопрос 30. Расчет вероятности выполнения проекта в директивный срок с помощью метода pert. Понятие о стохастических сетях
- •Вопрос № 31. Общая характеристика и область использования задач стохастического программирования
- •Вопрос 32. Мм-модель стохастического программирования и алгоритм ее решения
- •Вопрос 33. Мр – модель стохастического программирования: постановка задачи, алгоритм решения и экономические последствия учета фактора неопределенности
- •Вопрос 34. Понятие о стохастических моделях рр-типа и вероятностная трактовка оптимизации целевой функции
- •Вопрос 35. Назначение метода динамического программирования (дп). Общая постановка задачи дп
- •Вопрос 36. Принцип оптимальности Беллмана и алгоритм решения задач динамического программирования
- •Вопрос 37. Вероятностное динамическое программирование и его использование в марковских процессах принятия решений
- •Вопрос 38. Модель вероятностного динамического программирования с конечным числом этапов (конечный горизонт планирования)
- •Вопрос 39. Вероятностное динамическое программирование в случае бесконечного горизонта планирования: алгоритм определения оптимальной долгосрочной стратегии
- •Вопрос 40. Назначение, общая характеристика и примеры использования имитационного моделирования в экономике и социальной сфере
- •Вопрос 41. Сущность имитационного моделирования и типы имитационных моделей
- •Вопрос 42. Имитационное моделирование случайных событий и величин с помощью равномерного распределения
- •Вопрос 43 Моделирование экспоненциального и нормального распределений
- •Вопрос 44. Инвестиционный риск и его анализ на основе расчета математического ожидания денежных потоков
- •Вопрос 45. Имитационное моделирование денежных потоков и чистой приведенной стоимости инвестиционного проекта
- •Вопрос 46. Общая характеристика, типы и особенности многокритериальных задач принятия решений. Понятие о локальных и глобальном критерии оптимальности
- •Вопрос 47. Методы эквивалентного преобразования неоднородных частных критериев к единому виду (проблема нормализации) в многокритериальных задачах теории принятия решений
- •Вопрос 48. Принцип оптимальности Парето и формирование множества оптимальных решений
- •Вопрос 49. Понятие о принципе равновесия по Нэшу
- •Вопрос 50. Общая характеристика и классификация методов решения задач векторной оптимизации.
- •Вопрос 51. Метод свертки системы показателей эффективности
- •Вопрос 52. Характеристика методов решения многокритериальных задач, использующих ограничения на критерии (метод ведущего критерия и метод последовательных уступок)
- •Вопрос 53. Методы целевого программирования как эффективный способ решения многокритериальных задач управления.
- •Вопрос 54. Понятие о методах интерактивного программирования
- •Вопрос 55. Понятие о простых и сложных экспертизах и экспертных оценках
- •Экспертное оценивание важности объектов.
- •Вопрос 56. Усреднение экспертных оценок как алгоритм экспертного оценивания важности объектов
- •Вопрос 57. Метод попарного сравнения важности объектов. Шкала относительной важности объектов и понятие о транзитивной согласованности матрицы попарного сравнения объектов
- •Вопрос 58. Назначение сложных экспертиз. Понятие о декомпозиции проблем и интуитивных вероятностях
- •Вопрос 59. Экспертный анализ сложных проблем с помощью дерева целей Анализ сложных проблем с помощью дерева целей
- •Вопрос 60. Понятие о методе анализа иерархий и характерные области его применения
Вопрос 8. Понятие о теории игр. Классификация игр.
Раздел математики, изучающий конфликтные ситуации на основе их математических моделей, называется теорией игр. Более полное определение: теория игр - математическая теория конфликтных ситуаций, разрабатывающая рекомендации по наиболее рациональному образу действий каждого из участников, т.е. таких действий, которые обеспечивали бы ему наилучший результат.
Игровые схемы широко применяются в экономике. При этом выигрышем могут выступать величина прибыли, себестоимость, эффективность использования дефицитных ресурсов, производственных фондов, и т.д.
Анализ реальной конфликтной ситуации требует ее существенного упрощения – учета лишь наиболее важных факторов. При этом можно рассматривать игру как упрощенную математическую модель конфликтной ситуации, характеризующуюся наличием определенных правил. Эти правила устанавливают:
выбор образа действия игроков на каждом этапе игры;
информацию, которой обладает каждый игрок;
плату для каждого игрока после завершения любого этапа игры.
Стратегией игры называется совокупность правил, определяющих поведение игрока на протяжении всей игры. Стратегии каждого игрока определяют результаты или платежи в игре; при этом каждый игрок имеет некоторое множество (конечное или бесконечное) возможных стратегий.
Классификация игр возможна по разным признакам.
А) По количеству игроков. В игре может принимать участие любое конечное число игроков. Если игроков всего двое, или игроки объединяются в две группы, преследующие противоположные цели, то имеет место парная игра. В зависимости от количества стратегий в игре они делятся на конечные и бесконечные.
Б) В зависимости от взаимоотношений участников различают бескоалиционные (участники не имеют права заключать соглашения) и коалиционные игры (иногда используются синонимы – некооперативные и кооперативные игры соответственно).
В) По характеру выигрышей игры делятся на игры с нулевой суммой и ненулевой суммой. В играх с нулевой суммой общий капитал игроков не меняется, а лишь перераспределяется в ходе игры, в связи с чем сумма выигрышей равна нулю (при этом проигрыш рассматривается как отрицательный выигрыш). В играх с ненулевой суммой сумма выигрышей отлична от нуля.
Г) По виду функции выигрыша игры делятся на матричные, биматричные и др. В матричных играх (при двух участниках) выигрыши первого игрока задаются матрицей, в биматричных – выигрыши каждого игрока задаются своей матрицей.
Д) По количеству ходов игры делятся на одноходовые (выигрыш распределяется после одного хода каждого игрока) и многоходовые (выигрыш распределяется после нескольких ходов).
Стратегия игрока называется оптимальной, если она обеспечивает данному игроку при многократном повторении игры максимально возможный средний выигрыш или минимально возможный средний проигрыш, независимо от поведения противника.
Мы ограничимся рассмотрением парных матричных игр с нулевой суммой. Задание стратегий двух игроков в такой игре полностью определяет ее исход. Результаты задаются матрицей, строки и столбцы которой соответствуют различным стратегиям 1-го и 2-го игроков соответственно, а элементы - выигрышам одной стороны (равные проигрышам другой). Эта матрица называется платежной матрицей или матрицей игры.
