- •Вопрос 1. Предмет исследования и основные задачи теории принятия решений
- •Вопрос 2. Основные понятия теории принятия решений: проблема, лпр, цель, операция, модель, альтернатива, критерий, наилучшее решение
- •Вопрос 3. Классификация задач принятия решений
- •Вопрос 4. Краткая характеристика и экономическое содержание оптимизационных задач теории принятия решений. Линейные и нелинейные задачи оптимизации
- •Вопрос 5. Характеристика и примеры применения задач целочисленного линейного программирования в экономике и менеджменте
- •Вопрос 6. Задача о распределении бюджета как пример задач целочисленного линейного программирования. Использование логических условий и формирование зависимых решений
- •Вопрос 7. Сравнительная характеристика ситуаций определенности, риска и неопределенности в менеджменте. Основные виды неопределенности
- •Вопрос 8. Понятие о теории игр. Классификация игр.
- •Вопрос 9. Общая характеристика матричных игр с нулевой суммой. Понятие о стратегиях, платежной матрице и цене игры.
- •Вопрос 10. Решение матричных игр методом минимакса
- •Вопрос 11. Решение игр без седловых точек. Понятие о смешанных стратегиях и алгоритм определения средних выигрышей игроков
- •Вопрос 12. Определение оптимальных смешанных стратегий в играх без седловых точек
- •Вопрос 13. Понятие об играх с природой. Матрицы выигрышей и рисков
- •Вопрос 14. Определение оптимальных стратегий при известных вероятностях состояний природы (критерий оптимизации ожидаемого выигрыша)
- •Вопрос 15. Поиск оптимальных стратегий для игр с природой в условиях неопределённости (критерии Вальда, Сэвиджа, Гурвица)
- •Вопрос 16. Оценка целесообразности проведения эксперимента в играх с природой в условиях неопределенности
- •Вопрос 17. Многоэтапные процессы принятия решений и использование дерева решений
- •Вопрос 19. Понятие о сетевых моделях. Классификация событий и операцый сетевых графиков.
- •Вопрос 20. Правила и процедура построения сетевых графиков.
- •Вопрос 21. Понятие и алгоритм расчета критического пути сетевого графика
- •Вопрос 22. Назначение и основные виды оптимизации сетевых графиков
- •Оптимизация комплекса операций по стоимости - ставится задача минимизации стоимости проекта при фиксированном сроке его выполнения за счет увеличения времени выполнения отдельных работ.
- •Вопрос 23. Оптимизация времени выполнения проекта (комплекса работ)
- •Вопрос 24. Оптимизация стоимости проекта при фиксированном сроке его выполнения
- •Вопрос 25. Общая формулировка и примеры задач о потоках в сетях
- •Задача о потоке минимальной стоимости.
- •Задача о кратчайшем маршруте
- •Вопрос 26. Формулировка, экономическое содержание и алгоритм решения задачи о максимальном потоке
- •Вопрос 27. Экономическое содержание и алгоритм решения задачи о потоке минимальной стоимости
- •Вопрос 28. Задача о кратчайшем маршруте
- •Вопрос 29. Понятие о методе pert. Определение вероятностных характеристик сетевого графика в условиях неопределенности составляющих его работ
- •Расчет ожидаемой продолжительности времени выполнения проекта
- •Вопрос 30. Расчет вероятности выполнения проекта в директивный срок с помощью метода pert. Понятие о стохастических сетях
- •Вопрос № 31. Общая характеристика и область использования задач стохастического программирования
- •Вопрос 32. Мм-модель стохастического программирования и алгоритм ее решения
- •Вопрос 33. Мр – модель стохастического программирования: постановка задачи, алгоритм решения и экономические последствия учета фактора неопределенности
- •Вопрос 34. Понятие о стохастических моделях рр-типа и вероятностная трактовка оптимизации целевой функции
- •Вопрос 35. Назначение метода динамического программирования (дп). Общая постановка задачи дп
- •Вопрос 36. Принцип оптимальности Беллмана и алгоритм решения задач динамического программирования
- •Вопрос 37. Вероятностное динамическое программирование и его использование в марковских процессах принятия решений
- •Вопрос 38. Модель вероятностного динамического программирования с конечным числом этапов (конечный горизонт планирования)
- •Вопрос 39. Вероятностное динамическое программирование в случае бесконечного горизонта планирования: алгоритм определения оптимальной долгосрочной стратегии
- •Вопрос 40. Назначение, общая характеристика и примеры использования имитационного моделирования в экономике и социальной сфере
- •Вопрос 41. Сущность имитационного моделирования и типы имитационных моделей
- •Вопрос 42. Имитационное моделирование случайных событий и величин с помощью равномерного распределения
- •Вопрос 43 Моделирование экспоненциального и нормального распределений
- •Вопрос 44. Инвестиционный риск и его анализ на основе расчета математического ожидания денежных потоков
- •Вопрос 45. Имитационное моделирование денежных потоков и чистой приведенной стоимости инвестиционного проекта
- •Вопрос 46. Общая характеристика, типы и особенности многокритериальных задач принятия решений. Понятие о локальных и глобальном критерии оптимальности
- •Вопрос 47. Методы эквивалентного преобразования неоднородных частных критериев к единому виду (проблема нормализации) в многокритериальных задачах теории принятия решений
- •Вопрос 48. Принцип оптимальности Парето и формирование множества оптимальных решений
- •Вопрос 49. Понятие о принципе равновесия по Нэшу
- •Вопрос 50. Общая характеристика и классификация методов решения задач векторной оптимизации.
- •Вопрос 51. Метод свертки системы показателей эффективности
- •Вопрос 52. Характеристика методов решения многокритериальных задач, использующих ограничения на критерии (метод ведущего критерия и метод последовательных уступок)
- •Вопрос 53. Методы целевого программирования как эффективный способ решения многокритериальных задач управления.
- •Вопрос 54. Понятие о методах интерактивного программирования
- •Вопрос 55. Понятие о простых и сложных экспертизах и экспертных оценках
- •Экспертное оценивание важности объектов.
- •Вопрос 56. Усреднение экспертных оценок как алгоритм экспертного оценивания важности объектов
- •Вопрос 57. Метод попарного сравнения важности объектов. Шкала относительной важности объектов и понятие о транзитивной согласованности матрицы попарного сравнения объектов
- •Вопрос 58. Назначение сложных экспертиз. Понятие о декомпозиции проблем и интуитивных вероятностях
- •Вопрос 59. Экспертный анализ сложных проблем с помощью дерева целей Анализ сложных проблем с помощью дерева целей
- •Вопрос 60. Понятие о методе анализа иерархий и характерные области его применения
Вопрос 60. Понятие о методе анализа иерархий и характерные области его применения
Метод анализа иерархий, разработанный Т. Саати, применяется при решении многих проблем, среди которых:
Определение приоритетных направлений научных исследований;
Проектирование сложных технических систем;
Планирование развития фирм;
Прогнозирование цен на продукцию;
Выбор новых информационных систем или пакетов прикладных программ конкурирующих производителей.
В общем случае иерархия определяет расположение некоторых объектов (элементов иерархии) в порядке от высшего к низшему, от старшего к младшему по степени подчиненности.
Метод анализа иерархий включает:
иерархическое структурирование проблемы;
попарное сравнение элементов иерархии;
поэтапное выявление приоритетов.
Высший уровень соответствует цели проблемы. Элементы последующих уровней могут отождествляться:
с возможными решениями (альтернативами);
с ограничениями;
со сторонами, заинтересованными в том или ином решении проблемы;
с показателями (критериями) эффективности и т.п.
Простейшей является трехуровневая иерархия, включающая (Рис. 3):
уровень цели – первый уровень
уровень альтернатив (возможных решений) – второй уровень;
уровень критериев – третий уровень.
Иногда в качестве второго уровня рассматривается уровень критериев, а в качестве третьего – уровень альтернатив.
Рис. 3. Простейшая трехуровневая иерархия.
Пример. Менеджер отбирает одного из трех претендентов на вакантную должность на основании следующих критериев: 1) возраст, 2) образование, 3) владение информационными технологиями, 4) знание иностранного языка, 5) коммуникабельность, 6) психологическая устойчивость, 7) способность к самообучению. Здесь иерархия является трехуровневой: число элементов второго уровня (уровня альтернатив) равно трем, а третьего (уровень критериев) - семи.
При структурировании проблемы необходимо соблюдать ряд требований:
Все элементы одного уровня должны быть попарно сравнимы. Это позволяет выявить предпочтения среди альтернатив и определить наилучшее решение.
Структурирование проблемы производится совместно всеми заинтересованными субъектами для полноты перечня возможных решений и отражения всего спектра точек зрения и предпочтений участников.
Число элементов на любом уровне иерархии не должно превышать 7 – 9, иначе затрудняется сопоставление элементов иерархии между собой, усложняется получение взаимосогласованных оценок и возрастает риск получения ошибочных решений.
Главная
сложность при реализации МАИ заключается
в определении весовых коэффициентов
для оценки альтернативных решений.
