- •Вопрос 1. Предмет исследования и основные задачи теории принятия решений
- •Вопрос 2. Основные понятия теории принятия решений: проблема, лпр, цель, операция, модель, альтернатива, критерий, наилучшее решение
- •Вопрос 3. Классификация задач принятия решений
- •Вопрос 4. Краткая характеристика и экономическое содержание оптимизационных задач теории принятия решений. Линейные и нелинейные задачи оптимизации
- •Вопрос 5. Характеристика и примеры применения задач целочисленного линейного программирования в экономике и менеджменте
- •Вопрос 6. Задача о распределении бюджета как пример задач целочисленного линейного программирования. Использование логических условий и формирование зависимых решений
- •Вопрос 7. Сравнительная характеристика ситуаций определенности, риска и неопределенности в менеджменте. Основные виды неопределенности
- •Вопрос 8. Понятие о теории игр. Классификация игр.
- •Вопрос 9. Общая характеристика матричных игр с нулевой суммой. Понятие о стратегиях, платежной матрице и цене игры.
- •Вопрос 10. Решение матричных игр методом минимакса
- •Вопрос 11. Решение игр без седловых точек. Понятие о смешанных стратегиях и алгоритм определения средних выигрышей игроков
- •Вопрос 12. Определение оптимальных смешанных стратегий в играх без седловых точек
- •Вопрос 13. Понятие об играх с природой. Матрицы выигрышей и рисков
- •Вопрос 14. Определение оптимальных стратегий при известных вероятностях состояний природы (критерий оптимизации ожидаемого выигрыша)
- •Вопрос 15. Поиск оптимальных стратегий для игр с природой в условиях неопределённости (критерии Вальда, Сэвиджа, Гурвица)
- •Вопрос 16. Оценка целесообразности проведения эксперимента в играх с природой в условиях неопределенности
- •Вопрос 17. Многоэтапные процессы принятия решений и использование дерева решений
- •Вопрос 19. Понятие о сетевых моделях. Классификация событий и операцый сетевых графиков.
- •Вопрос 20. Правила и процедура построения сетевых графиков.
- •Вопрос 21. Понятие и алгоритм расчета критического пути сетевого графика
- •Вопрос 22. Назначение и основные виды оптимизации сетевых графиков
- •Оптимизация комплекса операций по стоимости - ставится задача минимизации стоимости проекта при фиксированном сроке его выполнения за счет увеличения времени выполнения отдельных работ.
- •Вопрос 23. Оптимизация времени выполнения проекта (комплекса работ)
- •Вопрос 24. Оптимизация стоимости проекта при фиксированном сроке его выполнения
- •Вопрос 25. Общая формулировка и примеры задач о потоках в сетях
- •Задача о потоке минимальной стоимости.
- •Задача о кратчайшем маршруте
- •Вопрос 26. Формулировка, экономическое содержание и алгоритм решения задачи о максимальном потоке
- •Вопрос 27. Экономическое содержание и алгоритм решения задачи о потоке минимальной стоимости
- •Вопрос 28. Задача о кратчайшем маршруте
- •Вопрос 29. Понятие о методе pert. Определение вероятностных характеристик сетевого графика в условиях неопределенности составляющих его работ
- •Расчет ожидаемой продолжительности времени выполнения проекта
- •Вопрос 30. Расчет вероятности выполнения проекта в директивный срок с помощью метода pert. Понятие о стохастических сетях
- •Вопрос № 31. Общая характеристика и область использования задач стохастического программирования
- •Вопрос 32. Мм-модель стохастического программирования и алгоритм ее решения
- •Вопрос 33. Мр – модель стохастического программирования: постановка задачи, алгоритм решения и экономические последствия учета фактора неопределенности
- •Вопрос 34. Понятие о стохастических моделях рр-типа и вероятностная трактовка оптимизации целевой функции
- •Вопрос 35. Назначение метода динамического программирования (дп). Общая постановка задачи дп
- •Вопрос 36. Принцип оптимальности Беллмана и алгоритм решения задач динамического программирования
- •Вопрос 37. Вероятностное динамическое программирование и его использование в марковских процессах принятия решений
- •Вопрос 38. Модель вероятностного динамического программирования с конечным числом этапов (конечный горизонт планирования)
- •Вопрос 39. Вероятностное динамическое программирование в случае бесконечного горизонта планирования: алгоритм определения оптимальной долгосрочной стратегии
- •Вопрос 40. Назначение, общая характеристика и примеры использования имитационного моделирования в экономике и социальной сфере
- •Вопрос 41. Сущность имитационного моделирования и типы имитационных моделей
- •Вопрос 42. Имитационное моделирование случайных событий и величин с помощью равномерного распределения
- •Вопрос 43 Моделирование экспоненциального и нормального распределений
- •Вопрос 44. Инвестиционный риск и его анализ на основе расчета математического ожидания денежных потоков
- •Вопрос 45. Имитационное моделирование денежных потоков и чистой приведенной стоимости инвестиционного проекта
- •Вопрос 46. Общая характеристика, типы и особенности многокритериальных задач принятия решений. Понятие о локальных и глобальном критерии оптимальности
- •Вопрос 47. Методы эквивалентного преобразования неоднородных частных критериев к единому виду (проблема нормализации) в многокритериальных задачах теории принятия решений
- •Вопрос 48. Принцип оптимальности Парето и формирование множества оптимальных решений
- •Вопрос 49. Понятие о принципе равновесия по Нэшу
- •Вопрос 50. Общая характеристика и классификация методов решения задач векторной оптимизации.
- •Вопрос 51. Метод свертки системы показателей эффективности
- •Вопрос 52. Характеристика методов решения многокритериальных задач, использующих ограничения на критерии (метод ведущего критерия и метод последовательных уступок)
- •Вопрос 53. Методы целевого программирования как эффективный способ решения многокритериальных задач управления.
- •Вопрос 54. Понятие о методах интерактивного программирования
- •Вопрос 55. Понятие о простых и сложных экспертизах и экспертных оценках
- •Экспертное оценивание важности объектов.
- •Вопрос 56. Усреднение экспертных оценок как алгоритм экспертного оценивания важности объектов
- •Вопрос 57. Метод попарного сравнения важности объектов. Шкала относительной важности объектов и понятие о транзитивной согласованности матрицы попарного сравнения объектов
- •Вопрос 58. Назначение сложных экспертиз. Понятие о декомпозиции проблем и интуитивных вероятностях
- •Вопрос 59. Экспертный анализ сложных проблем с помощью дерева целей Анализ сложных проблем с помощью дерева целей
- •Вопрос 60. Понятие о методе анализа иерархий и характерные области его применения
Вопрос 34. Понятие о стохастических моделях рр-типа и вероятностная трактовка оптимизации целевой функции
При PP
- постановке стохастической задачи
сначала задается предельно допустимое
«наихудшее» значение целевой функции.
Если, исходя из экономического смысла
задачи, необходимо максимизировать
критерий эффективности, то задается
минимально допустимое его значение
и требуется выполнение условия
.
Наоборот, при
минимизации ЦФ (например, себестоимости
продукции), задается максимально
допустимое значение
и налагается условие
.
Задача в PP – постановке
состоит в том, чтобы найти такие значения
переменных
,
при которых максимизируется вероятность
того, что целевая функция будет не хуже
предельно допустимого значения.
Таким образом, математическая модель стохастической задачи в PP -формулировке может быть представлена в виде:
(приведено выражение
для случая максимизации ЦФ; в случае
минимизации выражение в скобках в первой
формуле (8) имеет вид
).
Закон (или законы) распределения всех параметров считаются известными. Решение задач стохастического программирования данного типа получить сложнее.
Вопрос 35. Назначение метода динамического программирования (дп). Общая постановка задачи дп
Динамическое программирование (ДП) используется для оптимального планирования управляемых процессов. Этот метод оптимизации наиболее эффективен применительно к многошаговым или многоэтапным процессам принятия решений.
В общей постановке задача ДП формулируется следующим образом. Имеется некоторая управляемая система S с определенным набором параметров. В системе происходят некоторые процессы (экономические, производственные, технологические и т.п.), которые можно представить как многошаговые. На каждом шаге процессам в системе соответствуют определенные значения параметров. Заданы условия, позволяющие определить или начальное, или конечное состояние системы, или оба этих состояния. Задан показатель эффективности управления (целевая функция), численно выражающий эффект («выигрыш»), получаемый при каждом из множества допустимых управлений. В экономических системах ЦФ может определять прибыль, затраты, рентабельность, объем производства и т.п. Задача ДП состоит в поиске управления, переводящего систему из начального состояния в конечное и обеспечивающего экстремум целевой функции (минимум или максимум в зависимости от экономического содержания задачи). Такое управление называют оптимальным.
Метод ДП позволяет свести решение сложной многоэтапной задачи к решению совокупности более простых «подзадач». В результате вопрос о глобальной оптимизации целевой функции сводится к поэтапной оптимизации некоторых промежуточных целевых функций.
Методами динамического программирования оптимизируют работу управляемых систем с аддитивной, или мультипликативной целевой функцией. Аддитивной называется функция нескольких переменных вида
Слагаемые аддитивной целевой функции соответствуют эффектам решений, принимаемых на отдельных этапах управляемого процесса. По аналогии, мультипликативная функция распадается на произведение положительных функций различных переменных:
(2)
Важным преимуществом метода ДП по сравнению с классическими методами оптимизации является более широкая область применимости. Для метода ДП некритично требование линейности и дифференцируемости функций , несущественен вид ограничений; функция, выражающая выигрыш на каждом этапе, может быть задана не в аналитическом, а в табличном виде и т.п.
Классическим примером задачи ДП является планирование деятельности группы k промышленных предприятий на период хозяйственных лет.
