- •Вопрос 1. Предмет исследования и основные задачи теории принятия решений
- •Вопрос 2. Основные понятия теории принятия решений: проблема, лпр, цель, операция, модель, альтернатива, критерий, наилучшее решение
- •Вопрос 3. Классификация задач принятия решений
- •Вопрос 4. Краткая характеристика и экономическое содержание оптимизационных задач теории принятия решений. Линейные и нелинейные задачи оптимизации
- •Вопрос 5. Характеристика и примеры применения задач целочисленного линейного программирования в экономике и менеджменте
- •Вопрос 6. Задача о распределении бюджета как пример задач целочисленного линейного программирования. Использование логических условий и формирование зависимых решений
- •Вопрос 7. Сравнительная характеристика ситуаций определенности, риска и неопределенности в менеджменте. Основные виды неопределенности
- •Вопрос 8. Понятие о теории игр. Классификация игр.
- •Вопрос 9. Общая характеристика матричных игр с нулевой суммой. Понятие о стратегиях, платежной матрице и цене игры.
- •Вопрос 10. Решение матричных игр методом минимакса
- •Вопрос 11. Решение игр без седловых точек. Понятие о смешанных стратегиях и алгоритм определения средних выигрышей игроков
- •Вопрос 12. Определение оптимальных смешанных стратегий в играх без седловых точек
- •Вопрос 13. Понятие об играх с природой. Матрицы выигрышей и рисков
- •Вопрос 14. Определение оптимальных стратегий при известных вероятностях состояний природы (критерий оптимизации ожидаемого выигрыша)
- •Вопрос 15. Поиск оптимальных стратегий для игр с природой в условиях неопределённости (критерии Вальда, Сэвиджа, Гурвица)
- •Вопрос 16. Оценка целесообразности проведения эксперимента в играх с природой в условиях неопределенности
- •Вопрос 17. Многоэтапные процессы принятия решений и использование дерева решений
- •Вопрос 19. Понятие о сетевых моделях. Классификация событий и операцый сетевых графиков.
- •Вопрос 20. Правила и процедура построения сетевых графиков.
- •Вопрос 21. Понятие и алгоритм расчета критического пути сетевого графика
- •Вопрос 22. Назначение и основные виды оптимизации сетевых графиков
- •Оптимизация комплекса операций по стоимости - ставится задача минимизации стоимости проекта при фиксированном сроке его выполнения за счет увеличения времени выполнения отдельных работ.
- •Вопрос 23. Оптимизация времени выполнения проекта (комплекса работ)
- •Вопрос 24. Оптимизация стоимости проекта при фиксированном сроке его выполнения
- •Вопрос 25. Общая формулировка и примеры задач о потоках в сетях
- •Задача о потоке минимальной стоимости.
- •Задача о кратчайшем маршруте
- •Вопрос 26. Формулировка, экономическое содержание и алгоритм решения задачи о максимальном потоке
- •Вопрос 27. Экономическое содержание и алгоритм решения задачи о потоке минимальной стоимости
- •Вопрос 28. Задача о кратчайшем маршруте
- •Вопрос 29. Понятие о методе pert. Определение вероятностных характеристик сетевого графика в условиях неопределенности составляющих его работ
- •Расчет ожидаемой продолжительности времени выполнения проекта
- •Вопрос 30. Расчет вероятности выполнения проекта в директивный срок с помощью метода pert. Понятие о стохастических сетях
- •Вопрос № 31. Общая характеристика и область использования задач стохастического программирования
- •Вопрос 32. Мм-модель стохастического программирования и алгоритм ее решения
- •Вопрос 33. Мр – модель стохастического программирования: постановка задачи, алгоритм решения и экономические последствия учета фактора неопределенности
- •Вопрос 34. Понятие о стохастических моделях рр-типа и вероятностная трактовка оптимизации целевой функции
- •Вопрос 35. Назначение метода динамического программирования (дп). Общая постановка задачи дп
- •Вопрос 36. Принцип оптимальности Беллмана и алгоритм решения задач динамического программирования
- •Вопрос 37. Вероятностное динамическое программирование и его использование в марковских процессах принятия решений
- •Вопрос 38. Модель вероятностного динамического программирования с конечным числом этапов (конечный горизонт планирования)
- •Вопрос 39. Вероятностное динамическое программирование в случае бесконечного горизонта планирования: алгоритм определения оптимальной долгосрочной стратегии
- •Вопрос 40. Назначение, общая характеристика и примеры использования имитационного моделирования в экономике и социальной сфере
- •Вопрос 41. Сущность имитационного моделирования и типы имитационных моделей
- •Вопрос 42. Имитационное моделирование случайных событий и величин с помощью равномерного распределения
- •Вопрос 43 Моделирование экспоненциального и нормального распределений
- •Вопрос 44. Инвестиционный риск и его анализ на основе расчета математического ожидания денежных потоков
- •Вопрос 45. Имитационное моделирование денежных потоков и чистой приведенной стоимости инвестиционного проекта
- •Вопрос 46. Общая характеристика, типы и особенности многокритериальных задач принятия решений. Понятие о локальных и глобальном критерии оптимальности
- •Вопрос 47. Методы эквивалентного преобразования неоднородных частных критериев к единому виду (проблема нормализации) в многокритериальных задачах теории принятия решений
- •Вопрос 48. Принцип оптимальности Парето и формирование множества оптимальных решений
- •Вопрос 49. Понятие о принципе равновесия по Нэшу
- •Вопрос 50. Общая характеристика и классификация методов решения задач векторной оптимизации.
- •Вопрос 51. Метод свертки системы показателей эффективности
- •Вопрос 52. Характеристика методов решения многокритериальных задач, использующих ограничения на критерии (метод ведущего критерия и метод последовательных уступок)
- •Вопрос 53. Методы целевого программирования как эффективный способ решения многокритериальных задач управления.
- •Вопрос 54. Понятие о методах интерактивного программирования
- •Вопрос 55. Понятие о простых и сложных экспертизах и экспертных оценках
- •Экспертное оценивание важности объектов.
- •Вопрос 56. Усреднение экспертных оценок как алгоритм экспертного оценивания важности объектов
- •Вопрос 57. Метод попарного сравнения важности объектов. Шкала относительной важности объектов и понятие о транзитивной согласованности матрицы попарного сравнения объектов
- •Вопрос 58. Назначение сложных экспертиз. Понятие о декомпозиции проблем и интуитивных вероятностях
- •Вопрос 59. Экспертный анализ сложных проблем с помощью дерева целей Анализ сложных проблем с помощью дерева целей
- •Вопрос 60. Понятие о методе анализа иерархий и характерные области его применения
Вопрос 3. Классификация задач принятия решений
Классификацию задач принятия решений можно проводить по признакам, характеризующим качество доступной информации. Традиционно выделяют задачи принятия решений в условиях определенности, риска и неопределенности.
К классу задач ПР в условиях определенности относятся задачи с достаточной по объему достоверной количественной информацией. Здесь успешно применяются методы математического программирования.
Возможные исходы задач в условиях риска описываются с помощью некоторого вероятностного распределения, построение которого требует статистических данных, либо привлечения экспертов.
Задачи в условиях неопределенности характеризуются тем, что информация, необходимая для принятия решений, является неточной, неполной, неколичественной, а формальные модели исследуемой системы либо слишком сложны, либо отсутствуют
Вопрос 4. Краткая характеристика и экономическое содержание оптимизационных задач теории принятия решений. Линейные и нелинейные задачи оптимизации
Задача оптимизации - это задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Экономическая суть методов оптимизации заключается в том, что исходя из наличия определенных ресурсов выбирается такой способ их использования (распределения), при котором обеспечивается максимум (минимум) интересующего ЛПР показателя.
Методы оптимизации классифицируют в соответствии с задачами оптимизации:
Локальные методы: сходятся к какому-нибудь локальному экстремуму целевой функции. В случае унимодальной целевой функции, этот экстремум единственен, и будет глобальным максимумом/минимумом.
Глобальные методы: имеют дело с многоэкстремальными целевыми функциями. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции.
Существующие в настоящее время методы поиска можно разбить на три большие группы:
детерминированные;
случайные (стохастические);
комбинированные.
По виду целевой функции и допустимого множества, задачи оптимизации и методы их решения можно разделить на следующие классы:
Задачи оптимизации, в которых целевая функция
и
ограничения
являются
линейными функциями, разрешаются так
называемыми методами линейного
программирования.В противном случае имеют дело с задачей нелинейного программирования и применяют соответствующие методы. В свою очередь из них выделяют две частные задачи:
если и — выпуклые функции, то такую задачу называют задачей выпуклого программирования;
если
,
то имеют дело с задачей целочисленного
(дискретного) программирования.
Вопрос 5. Характеристика и примеры применения задач целочисленного линейного программирования в экономике и менеджменте
При решении многих
оптимизационных задач требуется, чтобы
компоненты вектора неизвестных
выражались в целых числах. В простейшем
случае это может быть связано с
необходимостью определения оптимального
числа физически цельных объектов. Задачи
этого типа относятся к задачам
целочисленной оптимизации или
целочисленного линейного программирования
(ЦЛП). Они требуют нахождения экстремума
линейной целевой функции (критерия
оптимальности)
при ограничениях
Если требование целочисленности распространяется лишь на часть переменных задачи, то она называется частично целочисленной.
Целочисленность переменных существенно усложняет поиск оптимальных решений, особенно в случае большого числа переменных. На практике оптимизация моделей целочисленного программирования требует на 1-3 порядка больших затрат машинного времени по сравнению с задачами ЛП с тем же количеством переменных.
Метод полного перебора (т.е. расчет значений ЦФ во всей области допустимых решений и выбор точки, соответствующей оптимальному значению) для большинства встречающихся на практике задач практически нереализуем.
Во многих моделях ЦЛП переменные могут принимать только значения 0 или 1 (модели двоичного целочисленного линейного программирования). Эти модели особенно важны для ТПР, так как двоичные переменные можно использовать для представления дихотомических решений (решений типа “да – нет”). Модели назначений, размещения производственных объектов и офисов, производственного планирования и управления инвестиционными портфелями принадлежат именно к данному классу задач.
