- •Вопрос 1. Предмет исследования и основные задачи теории принятия решений
- •Вопрос 2. Основные понятия теории принятия решений: проблема, лпр, цель, операция, модель, альтернатива, критерий, наилучшее решение
- •Вопрос 3. Классификация задач принятия решений
- •Вопрос 4. Краткая характеристика и экономическое содержание оптимизационных задач теории принятия решений. Линейные и нелинейные задачи оптимизации
- •Вопрос 5. Характеристика и примеры применения задач целочисленного линейного программирования в экономике и менеджменте
- •Вопрос 6. Задача о распределении бюджета как пример задач целочисленного линейного программирования. Использование логических условий и формирование зависимых решений
- •Вопрос 7. Сравнительная характеристика ситуаций определенности, риска и неопределенности в менеджменте. Основные виды неопределенности
- •Вопрос 8. Понятие о теории игр. Классификация игр.
- •Вопрос 9. Общая характеристика матричных игр с нулевой суммой. Понятие о стратегиях, платежной матрице и цене игры.
- •Вопрос 10. Решение матричных игр методом минимакса
- •Вопрос 11. Решение игр без седловых точек. Понятие о смешанных стратегиях и алгоритм определения средних выигрышей игроков
- •Вопрос 12. Определение оптимальных смешанных стратегий в играх без седловых точек
- •Вопрос 13. Понятие об играх с природой. Матрицы выигрышей и рисков
- •Вопрос 14. Определение оптимальных стратегий при известных вероятностях состояний природы (критерий оптимизации ожидаемого выигрыша)
- •Вопрос 15. Поиск оптимальных стратегий для игр с природой в условиях неопределённости (критерии Вальда, Сэвиджа, Гурвица)
- •Вопрос 16. Оценка целесообразности проведения эксперимента в играх с природой в условиях неопределенности
- •Вопрос 17. Многоэтапные процессы принятия решений и использование дерева решений
- •Вопрос 19. Понятие о сетевых моделях. Классификация событий и операцый сетевых графиков.
- •Вопрос 20. Правила и процедура построения сетевых графиков.
- •Вопрос 21. Понятие и алгоритм расчета критического пути сетевого графика
- •Вопрос 22. Назначение и основные виды оптимизации сетевых графиков
- •Оптимизация комплекса операций по стоимости - ставится задача минимизации стоимости проекта при фиксированном сроке его выполнения за счет увеличения времени выполнения отдельных работ.
- •Вопрос 23. Оптимизация времени выполнения проекта (комплекса работ)
- •Вопрос 24. Оптимизация стоимости проекта при фиксированном сроке его выполнения
- •Вопрос 25. Общая формулировка и примеры задач о потоках в сетях
- •Задача о потоке минимальной стоимости.
- •Задача о кратчайшем маршруте
- •Вопрос 26. Формулировка, экономическое содержание и алгоритм решения задачи о максимальном потоке
- •Вопрос 27. Экономическое содержание и алгоритм решения задачи о потоке минимальной стоимости
- •Вопрос 28. Задача о кратчайшем маршруте
- •Вопрос 29. Понятие о методе pert. Определение вероятностных характеристик сетевого графика в условиях неопределенности составляющих его работ
- •Расчет ожидаемой продолжительности времени выполнения проекта
- •Вопрос 30. Расчет вероятности выполнения проекта в директивный срок с помощью метода pert. Понятие о стохастических сетях
- •Вопрос № 31. Общая характеристика и область использования задач стохастического программирования
- •Вопрос 32. Мм-модель стохастического программирования и алгоритм ее решения
- •Вопрос 33. Мр – модель стохастического программирования: постановка задачи, алгоритм решения и экономические последствия учета фактора неопределенности
- •Вопрос 34. Понятие о стохастических моделях рр-типа и вероятностная трактовка оптимизации целевой функции
- •Вопрос 35. Назначение метода динамического программирования (дп). Общая постановка задачи дп
- •Вопрос 36. Принцип оптимальности Беллмана и алгоритм решения задач динамического программирования
- •Вопрос 37. Вероятностное динамическое программирование и его использование в марковских процессах принятия решений
- •Вопрос 38. Модель вероятностного динамического программирования с конечным числом этапов (конечный горизонт планирования)
- •Вопрос 39. Вероятностное динамическое программирование в случае бесконечного горизонта планирования: алгоритм определения оптимальной долгосрочной стратегии
- •Вопрос 40. Назначение, общая характеристика и примеры использования имитационного моделирования в экономике и социальной сфере
- •Вопрос 41. Сущность имитационного моделирования и типы имитационных моделей
- •Вопрос 42. Имитационное моделирование случайных событий и величин с помощью равномерного распределения
- •Вопрос 43 Моделирование экспоненциального и нормального распределений
- •Вопрос 44. Инвестиционный риск и его анализ на основе расчета математического ожидания денежных потоков
- •Вопрос 45. Имитационное моделирование денежных потоков и чистой приведенной стоимости инвестиционного проекта
- •Вопрос 46. Общая характеристика, типы и особенности многокритериальных задач принятия решений. Понятие о локальных и глобальном критерии оптимальности
- •Вопрос 47. Методы эквивалентного преобразования неоднородных частных критериев к единому виду (проблема нормализации) в многокритериальных задачах теории принятия решений
- •Вопрос 48. Принцип оптимальности Парето и формирование множества оптимальных решений
- •Вопрос 49. Понятие о принципе равновесия по Нэшу
- •Вопрос 50. Общая характеристика и классификация методов решения задач векторной оптимизации.
- •Вопрос 51. Метод свертки системы показателей эффективности
- •Вопрос 52. Характеристика методов решения многокритериальных задач, использующих ограничения на критерии (метод ведущего критерия и метод последовательных уступок)
- •Вопрос 53. Методы целевого программирования как эффективный способ решения многокритериальных задач управления.
- •Вопрос 54. Понятие о методах интерактивного программирования
- •Вопрос 55. Понятие о простых и сложных экспертизах и экспертных оценках
- •Экспертное оценивание важности объектов.
- •Вопрос 56. Усреднение экспертных оценок как алгоритм экспертного оценивания важности объектов
- •Вопрос 57. Метод попарного сравнения важности объектов. Шкала относительной важности объектов и понятие о транзитивной согласованности матрицы попарного сравнения объектов
- •Вопрос 58. Назначение сложных экспертиз. Понятие о декомпозиции проблем и интуитивных вероятностях
- •Вопрос 59. Экспертный анализ сложных проблем с помощью дерева целей Анализ сложных проблем с помощью дерева целей
- •Вопрос 60. Понятие о методе анализа иерархий и характерные области его применения
Вопрос 21. Понятие и алгоритм расчета критического пути сетевого графика
Для управления ходом выполнения проекта нужна информация о количественных параметрах сети, в том числе: о продолжительности выполнения всего комплекса операций, о сроках выполнения отдельных операций и их резервах времени. Различают следующие виды путей: полный, предшествующий событию, следующий за событием.
Путь сетевого графика называется полным, если его начальная вершина совпадает с исходным событием, а конечная - с завершающим.
Предшествующий событию путь - это путь от исходного события до данного.
Следующий за событием путь - путь от данного события до завершающего.
Важнейшим
параметром сетевого графика является
критический
путь -
полный путь, имеющий наибольшую
продолжительность во времени. Операции
и события, принадлежащие критическому
пути, называются соответственно
критическими
операциями
и критическими
событиями.
Суммарная продолжительность операций,
принадлежащих критическому пути, равна
критическому времени выполнения всего
комплекса операций и обозначается как
.
Рассмотрим процедуру расчета критического
пути сетевого графика. Продолжительности
операций
указаны возле соответствующих дуг.
Ожидаемые сроки свершения событий определяются по формулам:
где
– подмножество дуг сети, входящих
в событие
.
Определим
сначала ожидаемые (ранние) сроки свершения
событий
сетевого графика. Исходное событие
означает момент начала выполнения
комплекса операций, следовательно,
.
Событие (2) свершится, очевидно, спустя
2 ед. времени после свершения события
(1), так как время выполнения операции
(1,2) равно 2:
.
Событию
(3) предшествуют два пути:
и
.
Продолжительность первого пути равна
1 ед. времени, а второго – 2 ед. времени,
так как
.
Продолжительность второго пути равна:
.
Т.к. событие (3) может свершиться не раньше момента окончания всех входящих в него операций, то
.
В событие (4) входят две дуги, исходящие из событий (1) и (3), для которых ожидаемые сроки свершения найдены. Его ожидаемый срок свершения
Аналогично находятся ожидаемые сроки свершения событий (5), (6) и (7).
Ожидаемый
срок свершения события (7)
совпадает с критическим временем
(суммарной продолжительностью операций
критического пути.
Выделим
операции, принадлежащие критическому
пути. Из трех операций, входящих в
событие (7),
определила операция (5,7), выполнение
которой начинается после свершения
события (5) и продолжается 3 ед. времени
.
Момент свершения события (5) определила
операция (3,5), так как
.
В свою очередь момент свершения события
(3) определила операция (2,3), а события
(2) – операция (1,2). Эти операции на Рис.
3 выделены жирной линией. Таким образом,
критический путь
.
Увеличение времени выполнения любой
операции, принадлежащей критическому
пути, ведет к увеличению времени
выполнения всего комплекса операций.
Напротив, увеличение времени выполнения или задержка с выполнением некритических операций может не отразиться на сроке свершения завершающего события. Так, например, время выполнения операции (4,5) может быть увеличено, или начало ее выполнения может быть отсрочено на 1 ед. времени, и это не отразится на сроке свершения события (5), а, следовательно, и всего комплекса операций. Начало выполнения операции (4,7) может быть отсрочено на 3 ед. времени.
Некритические события имеют резервы времени, которые показывают, на какой предельно допустимый срок может задержаться свершение событий без изменения срока свершения завершающего события.
