- •Конспект лекций
- •Пермь 1995
- •Лекция №1 Введение. Понятие о численных методах. История развития численных методов.
- •Приближенные числа. Абсолютная и относительная погрешности.
- •Погрешность числа (а).
- •Абсолютная погрешность().
- •Предельная абсолютная погрешность.
- •Относительная погрешность ().
- •Предельная относительная погрешность (a).
- •Основные источники погрешности.
- •Значащие и верные цифры.
- •Верные цифры.
- •Округление чисел.
- •Связь относительной погрешности приближённого числа с количеством верных цифр этого числа.
- •Лекция № 2 Погрешность суммы.
- •Погрешность разности.
- •Погрешность произведения.
- •Число верных знаков.
- •Погрешность частного.
- •Общая формула для погрешности.
- •Обратная задача теории погрешности.
- •Лекция №3 и 4 Интерполяция функций.
- •Постановка задачи.
- •Конечные разности различных порядков.
- •Первая интерполяционная формула Ньютона.
- •Вторая интерполяционная формула Ньютона.
- •Общая характеристика интерполяционных формул с постоянным шагом.
- •Интерполяционная формула Лагранжа.
- •Частные случаи.
- •Лекции №5 Фрмула Ньютона для неравностоящих узлов Разделённые разности
- •Интерполяционная формула Ньютона для неравностоящих значений аргумента
- •Погрешность формулы Ньютона для неравностоящих узлов
- •Интерполяция сплайками
- •Многочлены Чебышева
- •Выбор узлов интерполирования
- •Обратное интерполирование для равноотстоящих узлов
- •Обратное интерполирование для неравноотстоящих точек
- •Общие выводы по задаче интерполяции
- •Оценка погрешности интерполяционной формулы Лагранжа
- •Лекция n 6 и 7 приближенное решение алгебраических и трансцендентных уравнений.
- •Определение корней Графический способ.
- •Аналитический способ.
- •Графическое решение уравнений.
- •Метод половинного деления.
- •Алгоритм метода
- •Метод пропорциональных частей (метод хорд)
- •Алгоритм метода
- •Метод ньютона (метод касательных)
- •Сходимость метода итераций
- •Сходимость метода
- •Лекция №8 и 9 Решение системы линейных уравнений Общая характеристика методов решения систем линейных уравнений
- •Метод Гаусса
- •Трудоёмкость метода Гаусса
- •Достоинства метода
- •Метод итераций
- •Сходимость метода итераций для решения системы алгебраических уравнений
- •Достоинства метода итераций
- •Метод Зейделя
- •Лекция №10 Численное решение систем линейных уравнений
- •Метод Ньютона
- •Сходимость метода Ньютона
- •Теорема о существовании корней и сходимости процесса Ньютона
- •Метод скорейшего спуска (градиентный метод)
- •Градиент функции u
- •Сходимость градиентного метода
- •Лекции №11 и 12 Приближённое дифференцирование.
- •Графический способ дифференцирования.
- •Алгоритм построения графика производной.
- •Лекция n 13
- •Особенности метода Эйлера.
- •Метод Руте-Кутта.
- •Метод Адамса.
- •Лекция №14 Краевая задача. Методы её решения.
- •Метод конечных разностей для линейных дифференциальных уравнений.
- •Метод прогонки.
- •Метод конечных разностей для нелинейных уравнений второго порядка.
- •Лекция №15 методы обработки эксперементальных данных. Постановка задачи
- •Узловые точки
- •Класс функций
- •Критерий согласия
- •Среднеквадратический критерий
- •Минимальный критерий или критерий чебышева
- •Вероятностно-зональный критерий
- •Точность
- •Метод наименьших квадратов постановка задачи
Особенности метода Эйлера.
Метод очень прост в реализации, но обладает малой точностью, поскольку погрешность каждого нового шага систематически возрастает. Существует модификация метода, повышающая его точность - метод Эйлера-Коши - второй улучшенный метод.
Геометрически это
означает, что мы определяем направление
интегральной кривой в исходной точке
и во вспомогательной точке
,
а в качестве окончательного берем
среднее этих направлений.
Метод Руте-Кутта.
Метод Эйлера и метод Эйлера-Коши относятся к семейству методов Руте-Кутта, имеющие следующий вид:
Фиксируем некоторые числа
последовательно вычисляем
Тогда
Наибольшее применение получил метод Руте-Кутта 4-го порядка:
Геометрический смысл метода Руте-Кутта состоит в следующем:
Из точки
движемся в направлении, определяемом
углом
На этом направлении выбираются точки
.
Затем из точки
движемся в направлении, определяемом
углом
1) Опрееделяем точку и направление
2) Выбираем точку
,
и направление
3) Выберем точку
,
и направление
.
4) Выберем точку
,
и направление
Схема Руте-Кутта имеет ряд важнейших достоинств:
1) высокая точность
2)
явная схема вычислений
за определенное количество шагов и по
определенным формулам.
3) возможен переменный шаг, т.е. можно сменить шаг, где функция быстро меняется.
легко оформляется.
Метод Адамса.
Уточняет уже ранее рассчитанные приближения
Пусть найдены каким-либо способом три последовательности значений искомой функции (“начальный отрезок”):
.……………
- Экстраполяционная формула Адамса.
Схема Адамса в виде таблицы.
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
С
помощью этой формулы получаем предсказанные
.
Но
надо уточнить
Для работы на ЭВМ
формулы Адамса лучше применять в другой
форме, где
определяется не через
,
а непосредственно через q.
Экстраполяционная формула Адамса:
Интерполяционная формула Адамса:
