
- •Конспект лекций
- •Пермь 1995
- •Лекция №1 Введение. Понятие о численных методах. История развития численных методов.
- •Приближенные числа. Абсолютная и относительная погрешности.
- •Погрешность числа (а).
- •Абсолютная погрешность().
- •Предельная абсолютная погрешность.
- •Относительная погрешность ().
- •Предельная относительная погрешность (a).
- •Основные источники погрешности.
- •Значащие и верные цифры.
- •Верные цифры.
- •Округление чисел.
- •Связь относительной погрешности приближённого числа с количеством верных цифр этого числа.
- •Лекция № 2 Погрешность суммы.
- •Погрешность разности.
- •Погрешность произведения.
- •Число верных знаков.
- •Погрешность частного.
- •Общая формула для погрешности.
- •Обратная задача теории погрешности.
- •Лекция №3 и 4 Интерполяция функций.
- •Постановка задачи.
- •Конечные разности различных порядков.
- •Первая интерполяционная формула Ньютона.
- •Вторая интерполяционная формула Ньютона.
- •Общая характеристика интерполяционных формул с постоянным шагом.
- •Интерполяционная формула Лагранжа.
- •Частные случаи.
- •Лекции №5 Фрмула Ньютона для неравностоящих узлов Разделённые разности
- •Интерполяционная формула Ньютона для неравностоящих значений аргумента
- •Погрешность формулы Ньютона для неравностоящих узлов
- •Интерполяция сплайками
- •Многочлены Чебышева
- •Выбор узлов интерполирования
- •Обратное интерполирование для равноотстоящих узлов
- •Обратное интерполирование для неравноотстоящих точек
- •Общие выводы по задаче интерполяции
- •Оценка погрешности интерполяционной формулы Лагранжа
- •Лекция n 6 и 7 приближенное решение алгебраических и трансцендентных уравнений.
- •Определение корней Графический способ.
- •Аналитический способ.
- •Графическое решение уравнений.
- •Метод половинного деления.
- •Алгоритм метода
- •Метод пропорциональных частей (метод хорд)
- •Алгоритм метода
- •Метод ньютона (метод касательных)
- •Сходимость метода итераций
- •Сходимость метода
- •Лекция №8 и 9 Решение системы линейных уравнений Общая характеристика методов решения систем линейных уравнений
- •Метод Гаусса
- •Трудоёмкость метода Гаусса
- •Достоинства метода
- •Метод итераций
- •Сходимость метода итераций для решения системы алгебраических уравнений
- •Достоинства метода итераций
- •Метод Зейделя
- •Лекция №10 Численное решение систем линейных уравнений
- •Метод Ньютона
- •Сходимость метода Ньютона
- •Теорема о существовании корней и сходимости процесса Ньютона
- •Метод скорейшего спуска (градиентный метод)
- •Градиент функции u
- •Сходимость градиентного метода
- •Лекции №11 и 12 Приближённое дифференцирование.
- •Графический способ дифференцирования.
- •Алгоритм построения графика производной.
- •Лекция n 13
- •Особенности метода Эйлера.
- •Метод Руте-Кутта.
- •Метод Адамса.
- •Лекция №14 Краевая задача. Методы её решения.
- •Метод конечных разностей для линейных дифференциальных уравнений.
- •Метод прогонки.
- •Метод конечных разностей для нелинейных уравнений второго порядка.
- •Лекция №15 методы обработки эксперементальных данных. Постановка задачи
- •Узловые точки
- •Класс функций
- •Критерий согласия
- •Среднеквадратический критерий
- •Минимальный критерий или критерий чебышева
- •Вероятностно-зональный критерий
- •Точность
- •Метод наименьших квадратов постановка задачи
Пермский государственный технический университет
Конспект лекций
по курсу: “Вычислительные методы”.
Составил:
к.т.н., доцент Андриевская Н.В.
Пермь 1995
Лекция №1 2
Лекция № 2 9
Лекция №3 и 4 17
Лекции №5 27
Лекция N 6 и 7 34
Лекция №8 и 9 42
Лекция №10 50
Лекции №11 и 12 58
Лекция N 13 64
Лекция №14 72
Лекция №15 77
Содержание:
п/п №
|
№ лекции |
Стр. |
1 |
Лекция №1 |
2 |
2 |
Лекция №2 |
9 |
3 |
Лекция №3 |
17 |
4 |
Лекция №4 |
17 |
5 |
Лекция №5 |
25 |
6 |
Лекция №6 |
34 |
7 |
Лекция №7 |
34 |
8 |
Лекция №8 |
42 |
9 |
Лекция №9 |
42 |
10 |
Лекция №10 |
50 |
11 |
Лекция №11 |
58 |
12 |
Лекция №12 |
58 |
13 |
Лекция №13 |
64 |
14 |
Лекция №14 |
72 |
15 |
Лекция №15 |
77 |
Список литературы
Б.П. Демидович, И.А. Марон. Основы вычислительной математики. М. 1963 г.
Н.Н. Калиткин. Численные методы. М. 1978 г.
Е.А. Волков. Численные методы. М. 1987 г.
Н.В. Копчёнова, И.А. Марои. Вычислительная математика в примерах и задачах. М. 1972 г.
Лекция №1 Введение. Понятие о численных методах. История развития численных методов.
Современное развитие науки и техники тесно связано с использованием ЭВМ, ставшим рабочим инструментом учёного, инженера, конструктора. ЭВМ позволяет строить математические модели сложных устройств и процессов, при этом резко сократить время и стоимость инженерных разработок.
Широкое использование ЭВМ способствовало развитию вычислительной математики (прикладной математики). Как и любая наука, математика представляет собой сплав "классической" (теоретической) науки и прикладной науки, в роли последней выступает область вычислительных методов.
В основе вычислительной математики лежит решение задач математического моделирования численными методами. Решение задач этими методами даёт приближенное решение, но в ряде случаев это выгодно, так как не всегда представляется возможность разрешить математическую задачу аналитически, а методы решения настолько громоздки и трудоемки, то полученное решение становится приемлемым для проектного применения.
Разработанные на сегодняшний момент численные методы перекрыли практически всю классическую математику моделирования. Применение приближенных численных методов во многих случаях более предпочтительно даже тогда, когда известен точный метод решения, так как достаточная точность и небольшие затраты времени при использовании ЭВМ обеспечивают получение ценных результатов, не прибегая к громоздким выкладкам.
Главная задача вычислительной математики - фактическое нахождение решение с требуемой точностью, тогда как классическая математика решает в основном задачи существования и свойств решения.
Вычислительная математика начала свое развитие достаточно давно и в своем движении прошла три этапа:
I. Первый этап начался 3-4 тысячи лет назад. Он был связан с несложными задачами арифметики, алгебры и геометрии. Например, ведение конторских книг, вычисление площадей и объемов, расчетами простейших механизмов. Вычислительные средства- палочки, пальцы, камешки и вершина- счеты.
II. Второй период начался с Ньютона. В этот период решались задачи астрономии, геодезии и расчета механических конструкций, сводящиеся либо к обыкновенным дифференциальным уравнениям, либо к алгебраическим системам с большим числом неизвестных. Вычислительные средства- таблицы элементарных функций, арифмометры и логарифмические линейки.
III. Третий период начался примерно с 1940 года. Толчком к развитию прикладной математики послужили военные задачи, требующие высокой скорости и решения задач. Появились электронные вычислительные машины.
В основу изучения и практического использования численных методов положены следующие основополагающие тезисы:
1. Цель расчетов - это понимание, а не числа;
2. Прежде чем решать задачу, необходимо подумать над практическим применением ее решения;
3. ЭВМ многократно увеличивает некомпетентность вычислителя (инженера). До производства вычислений на ЭВМ необходимо представлять физическую сущность процессов, которые инженер моделирует с помощью программы на ЭВМ.