- •Конспект лекций
- •Основы технического эксперимента
- •17.05.02.07 Спортивное и охотничье оружие
- •Содержание
- •Роль науки в обеспечении экономического роста
- •Лекция № 1.
- •1.1. Физические основы разрушения металлов
- •Скольжения по границам зерен.
- •1.2. Феноменологическая теория разрушения
- •Лекция № 2.
- •2.1. Проблемы машиноведения и эксперементальные
- •Задачи обеспечения прочности, ресурса и функционирования машин на основе экспериментальных исследований.
- •2.2. Параметры машин, исследуемые экспериментально.
- •Лекция № 3. Тема: модели и моделирование приборов и процессов.
- •3.2. Физическое моделирование. Критерии подобия.
- •3.3. Математическое моделирование.
- •Лекция 4 . Тема: методы и средства испытаний материалов, конструкций
- •4.1 Механические характеристики материалов,
- •Паспортизация материалов и полуфабрикатов. Классификация методов испытаний.
- •4.2. Методы и средства испытания конструктивных образцов, деталей машин на несущуюю способность и усталость.
- •Лекция № 5.
- •5.1 Условия проведения многофакторного эксперимента
- •Химический состав инструментальных сталей по гост 5950 - 73
- •5.2. Алгоритм обработки результатов эксперимента.
- •Лекция № 6. Тема: определение напряжений в пластической области по распределению твердости.
- •6.1. Изменение твердости деформируемого металла.
- •Стали шх15.
- •6.2. Методика эксперимента
- •6.3. Плоское напряженное состояние с осевой симметрией
- •6.4. Определение напряжений и нагрузок при разрушении по твердости разрушенной детали
- •Определение крутящего момента по твердости разрушившегося вала.
- •Лекция № 7.
- •7.1. Метод делительных сеток
- •7.2. Исследование процессов пластического формоизменения.
- •Лекция № 8. Тема: методика нанесений сеток.
- •8.1. Нанесение сеток, растров и фигур на образцы, детали и экраны
- •8.2. Метод э. Зибеля.
- •8. 3. Метод п. О. Пашкова.
- •По п. О. Пашкову.
- •Лекция № 9. Тема: метод электроизмерений.
- •9.1 . Основы метода. Тензоэффект и тензорезисторы.
- •9.2. Схемы измерения деформаций. Аппаратура.
- •Список используемой литературы.
- •1.1. Основная литература
- •1.2 Дополнительная литература
3.3. Математическое моделирование.
Математические
модели могут быть функциональными и
информационными. Функциональная модель
подобна объекту в отношении его поведения
в различных условиях, реакции выходных
переменных на входные воздействия или
на изменение внутреннего состояния
объекта. Информационные модели отображают
характер и форму параметров на выходе
объекта и их изменение при изменении
входных величин. При этом несущественна
внутренняя структура модели: например,
могут использоваться записи типичных
реакций системы или реальные выходные
устройства объекта.
Математические модели могут быть реализованы на АВМ, либо с помощью цифрового моделирования.
Основным элементом решающих узлов АВМ является операционный или решающий усилитель. Он позволяет реализовать большинство линейных операций, связанных с решением обыкновенных дифференциальных уравнений, а так же используется в нелинейных решающих узлах. Составными частями операционного усилителя являются усилитель постоянного тока У, цепь обратной связи Yo и входные цепи Υ1, ..., Υ п.
Электронный или полупроводниковый усилитель постоянного тока серийных АВМ имеет большой коэффициент усиления (около 104 – 106), широкую полосу пропускания в низкочастотной области (от 0 до 10 кгц) и состоит из нечетного числа каскадов, чем обеспечивается изменение знака усиливаемых сигналов. Особые меры принимаются по снижению дрейфа нуля усилителя. Входная и выходная цепи всех усилителей имеют общий узел ("землю"), что упрощает составление набора решаемой задачи на АВМ.
Входные цепи и цепь обратной связи представляют собой пассивные двухполюсники из резисторов и конденсаторов. Схемы этих двухполюсников определяют вид математических операций, выполняемых операционным усилителем: суммирование, дифференцирование или интегрирование.
Основным достоинством реализации модели на АВМ является возможность реализации достаточно сложных моделей, описываемых дифференциальными уравнениями высоких порядков, за весьма короткое время. Это качество делает незаменимой АВМ, например, в блоках управления ЛA. Однако, АВМ присущи существенные недостатки - недостаточная точность и сложность съема информации о результатах моделирования, особенно промежуточных значений.
В последнее время большое распространение получило использование ЭЦВМ для реализации процесса математического моделирования. Высокое быстродействие, точность, удобное представление информации, простота в обращении, наличие обширной библиотеки научных подпрограмм, все это делает ЭЦВМ поистине универсальным инструментом исследования.
В заключении следует отметить, что моделирование - ответственная научная задача, имеющая общее принципиальное и познавательное значение, но его нужно рассматривать только как исходную базу для главной задачи. Последняя состоит в фактическом определении законов природы, в отыскании общих свойств и характеристик различных классов явлений, в разработке экспериментальных и теоретических методов исследования и разрешения различных проблем, наконец, в получении математических материалов, приемов, приемов и рекомендаций для решения конкретных практических задач.
Υ1 Υo
Рис. 3.1. Схема операционного усилителя АВМ
