- •1. Фізичні властивості гірських порід
- •1.1. Поруватість гірських порід
- •1.2. Водонасиченість гірських порід
- •1.3. Електричні властивості гірських порід
- •1.5. Щільність (густина) гірських порід і руд
- •1.6. Магнетні властивості гірських порід
- •1.7. Радіоактивні властивості природних та штучно створених речовин
- •1.8. Термічні властивості
- •1.9. Залежність між “геофізичними” та “інженерно-геологічними” і “гідрогеологічними” властивостями порід*
- •1.9.2. Скельні породи
- •2 Електророзвідувальні методи дослідження
- •2.1 Метод опорів.
- •2.1.1 Загальні відомості про метод опору
- •2.1.2 Апаратура та обладнання,
- •2.1.3. Електричне профілювання
- •2.1.5. Метод зарядженого тіла
- •Питання для перевірки знань.
- •2.2. Метод спричинених потенціалів
- •2.2.1 Теоретичні та експериментальні матеріали про природу спричинених потенціалів
- •2.2.2 Методика польових досліджень
- •2.2.3. Камеральне опрацювання та інтерпретація польових матеріалів
- •2.2.4 Можливість застосування методу спричинених потенціалів
- •2.3. Метод природного електричного поля
- •2.3.2. Методика виконання польових робіт
- •2.3.3 Опрацювання та інтерпретація результатів знімання
- •2.3.4. Царина застосування методу природного електричного поля
- •2.4 Природне імпульсне електромагнетне поле землі
1.5. Щільність (густина) гірських порід і руд
Головним фізичним параметром, на якому базується гравіметрія, є щільність (густина) речовини σ, що дорівнює відношенню її маси P до об’єму V:
σ=P/V.
У системі СГС її вимірюють у г/см3, у системі СІ - в г/м3. Розрізняють два види щільності - загальну та мінералогічну. Перша - це відношення маси головних агрегатних фаз породи (твердої, рідкої та газуватої) до загального об’єму, який вони займають. Мінералогічна щільність - це відношення маси твердої фази до її об’єму.
Важливим є також вивчення поруватості (діркуватості) і вологості гірських порід, оскільки значення щільності суттєво залежить від цих параметрів. Оскільки ці питання докладно висвітлені вище (пп.1.1.-1.2.), детально зупинятися на них ми не будемо.
Численними дослідами доведено, що головними причинами, що суттєво впливають на щільність гірських порід, а отже, і на величину гравітаційних полів, є їхній мінералогічний склад, текстурні та структурні особливості, тріщинуватість, поруватість, вологість, нафто- та газонасичення, ступінь вивітрілості, вік порід тощо. В зв’язку з цим варто зазначити, що у малопоруватих порід (майже всі магматичні та метаморфічні утвори, більшість вапняків та руд) густина переважно залежить від мінералогічного складу, оскільки діапазон зміни щільності головних породотвірних мінералів досить значний (табл. 2).
У сильно поруватих порід (піски, глини, деякі корисні копалини та вапняки) головним чинником зміни щільності є поруватість, значення якої в окремих випадках досягає 30-35%.
Із першого пункту та таблиці 2 випливає, що зі збільшенням основності інтрузивних порід зростає їхня щільність (рис. 16).
Таблиця 2
Середнє значення мінералогічної щільності деяких мінералів
Мінерали |
Середнє значення мінералогічної щільності, г/см3 |
Калієві польові шпати Плагіоклази Кварц Піроксени Амфіболи Олівіни Магнетит Гематит Хроміт |
2,54-2,60 2,60-2,76 2,66 2,80-3,56 2,99-3,46 3,20-4,34 4,90-5,20 5,20 4,50 |
Залежність густини гірських порід від їхніх текстурних та структурних особливостей можна продемонструвати такими двома прикладами:
дещо меншу щільність, ніж їхні інтрузивні аналоги, мають ефузивні породи (середня щільність базальтів 2,54, а діоритів - 2,80 г/см3);
густина масивних базальтів у середньому становить 2,7 г/см3, а пухирчастої і великопухирчастої структури, відповідно, - 2,5 та 2,4,; г/см3.
Зі збільшенням поруватості у породах зростає частка газової і зменшується частка твердої фази, тому їхня щільність, відповідно, зменшується. Наприклад, для пісковиків збільшення поруватості у межах від 1 до 18% і далі до 36% приводить до майже лінійного збільшення σ, відповідно, з 1,8 до 2,2 і 2,7 г/см3. Аналогічні результати отримані і для вапняків.
Практично все, що стосується поруватості (зменшення густини порід із збільшенням їхньої порожнинності), стосується і їхньої тріщинуватості та вивітрілості. Наприклад, щільність теригенних відкладів закономірно збільшується з глибиною від 1,8 до 2,6 г/см3 (у середньому приблизно 2,2 г/см3) завдяки зменшенню поруватості внаслідок збільшення тиску перекривних порід.
Порівняна незалежність щільності від глибини залягання порід властива тільки для консолідованих, малотріщинуватих магматичних і метаморфічних порід, поруватість яких зрідка перевищує перші відсотки. До речі, окрім згаданого вище, щільність метаморфічних порід залежить і від виду та інтенсивності метаморфізму. Наприклад, регіональний динамометаморфізм призводить до збільшення щільності осадових порід. і, навпаки, гідротермальні, особливо низькотемпературні метаморфічні процеси, що в ультраосновних породах відбуваються з виділенням води або кремневої кислоти, приводять до зменшення щільності (під час перетворення дуніту в серпентиніт густина порід зменшується з 3,3 до 2,5 г/см3).
Рис.17. Залежність густини вивержених гірських порід від їхнього мінерального складу (діаграма мінерального складу за В.І. Лучицьким). [За Андреєвим і Клушиним, 1962]
Щільність дуже поруватих порід буде поступово, хоча й незначно, збільшуватися у випадку заповнення порожнин газом, нафтою та водою.
Різниця у щільності гірських порід дає змогу широко використовувати гравіметрію під час різноманітних досліджень - від регіональних робіт до пошуків і розвідування родовищ корисних копалин, а інколи і для простежування окремих рудних тіл.
Питання про залежність між “гравіметричними” та “інженерно-геологічними” і “гідрогеологічними” параметрами [Vp=f(σ) та інш.] будуть розглянуті у настпному розділі, тому тут на цьому ми не зупиняємося.
