Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Підручник.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
13.63 Mб
Скачать

1.3. Електричні властивості гірських порід

До електричних властивостей гірських порід належать : питомий опір, поляризаційність, діелектрична проникність, електрохімічна активність.

П и т о м и й о п і р ρ - це опір кубічного сантиметра (або метра) речовини за умови, що струм пропускають простопадно до його грані. В системі СІ його вимірюють в омах на метр (Ом·м), а в системі СГС - в омах на сантиметр (Ом·см), що випливає з виразу:

ρ =RS/l, (1.2)

де R - опір порід, що характеризує здатність об’єкту протидіяти протіканню електричного струму, який вимірюють в Ом; l - довжина, м (см); S - поперечний переріз, м2 (см2).

Дуже часто в практиці застосовують параметр, обернений до питомого опору, який називають питомою провідністю (γ =1/ρ). Вимірюють її у системах СІ та СГС, відповідно, в Ом·м та Ом·см у степені -1.

П о л я р и з а ц і й н і с т ь η - це здатність гірських порід утворювати вторинні електричні поля під впливом первинного, які фіксують після вимкнення поля. Визначають її за формулою:

η = , (1.3)

де ΔUпп - різниця потенціалів первинного поля; ΔUвп - різниця потенціалів вторинного поля, яку фіксують через деякий час після його вимкнення і вимірюють у відсотках.

Д і е л е к т р и ч н а п р о н и к н і с т ь ε - це здатність речовини (гірських порід) концентрувати або розпорошувати електромагнетну енергію і є наслідком упорядкування орієнтації електричних зарядів. Вимірюють її у фарадах та мікрофарадах на метр (Ф/м, мкФ/м).

Відносна діелектрична проникність εвід - це коефіцієнт, що відображає, у скільки разів зменшиться напруга електричного поля Е в діелектрику щодо напруги електричного поля Е0 у вакуумі (порожнечі):

εвід =E/E0. (1.4)

Е л е к т р о х е м і ч н а а к т и в н і с т ь α - це властивість гірських порід утворювати електричне поле внаслідок окисно-відновних, фільтраційних, дифузійно-адсорбційних та деяких інших процесів. Цей параметр характеризує різниця потенціалів ΔU, яку вимірюють у мілівольтах (мВ).

Гірські породи - це багатофазові системи, що містять у собі тверду, рідку та частково газову складові. Тверду фазу в цих системах становлять породотвірні та рудні мінерали, рідку - природні розчини (інколи нафта), що повністю або частково заповнюють пори та порожнини гірських порід, газову - природні гази, а в верхній частині розрізу - ґрунтове повітря. Отже, електричні властивості гірських порід залежать від:

  • електричних властивостей мінералів ρм, що утворюють твердий скелет породи, їхнього складу та кількості у породі електронно-провідних частинок ρпч (див. табл. 1 та рис. 2) та їхнього расташування (рис. 3).

  • електричних властивостей рідин і газів, що заповнюють пори та порожнини гірських порід (значення ρп розчинів передусім залежить від кількості і складу розчинених у них солей, поступово зменшуючись зі збільшенням їхньої концентрації і дещо менше від їхньої температури) (див. рис.4 та 5);

  • наявності в породах пор та порожнин, насичених рідиною, зі збільшенням яких їхній питомий опір помітно зменшується (рис.6);

  • структурно -текстурних особливостей порід, тобто форми і взаємного розташування пор та мінерального скелета порід, які у кожному конкретному випадку визначають дослідним шляхом(рис.6);

  • тиску (для поруватих порід ця залежність питомого опору від тиску в межах 0-300 атм. зумовлена зменшенням перерізу порового простору і ускладненням його форми, рис. 7);

  • температури, вплив якої для позитивних значень параметру визначають за формулою:

(5)

αt - коефіцієнт, що в середньому становить 0,0025 .

  • у межах від’ємних значень температур питомий опір гірських порід передусім залежить від фазового переходу рідини до твердого стану розчинів (льоду), ρп якого є практично безмежно великим, а тому із промерзанням рідини, опір порід стрімко збільшується (див. рис. 8).

Рис.2. Різна структура вкраплених руд.

а) провідні вкрапленики серед непровідного цементу; б) провідний рудний цемент і непровідні нерудні включення.

Таблиця 1

Електричні властивості деяких мінералів за температури 20о С

Мінерали

ρ, Ом·м

ε, діапазон частот10-107 Гц

Слюди

1013 - 1016

5,0-8,0

Кварц

1012 -1014

4,2-5,5

Польові шпати

1010 -1012

4,0-10,0

Хлориди

1012 -1015

5,0-6,0

Нафта

109 -1014

10,0-30,0

Кальцит

108 -1012

7,5-8,5

Ангідрит

107 -1010

6,0-6,5

Апатит

104 -106

7,5-10,5

Вода

10-1 -105

80,0

Графіт

10-4 -10-2

-

Галеніт

10-1 -10-2

8,0-17,0

Молібденіт

102 -106

8,0-17,0

Пірит

10-3 -101

8,0-17,0

Золото

10-6

8,0-17,0

Рис. 3. Приблизна залежність коефіцієнта Рм від процентного вмісту провідних мінералів у гірській породі Км .за Л.Я. Несторовим

Рис. 4. Залежність питомого опору різних розчинів від їхньої концентрації

за В.Н.Дахновим

Рис. 5. Залежність питомого опору різних розчинів від їхньої температури.

Рис. 6. Залежність відносного опору порід від поруватості:

1 - пісок, 2 - ущільнений пісок, 3 - пісковик, 4 - вапняк, 5 - великокристалічні вапняки і доломіти; 6 - щільні дрібнокристалічні вапняки і доломіти

Рис. 7. Залежність відносного опору пісковиків з різним цементом від тиску (за Л.М. Мармонштейн та ін.)

Цемент: 1 - глинясто-карбонатний; 2 - карбонатний

Рис. 8. Залежність питомого опору головних різновидів гірських порід від температури.

1 - глина; 2- пісок; 3 - скельні породи

Пухкі породи не мають сталих значень опору, оскільки вони повністю залежать від їхньої водонасиченості і мінералізації підземних вод. Найнижчий і водночас незначний діапазон змін опорів властивий для пластичних порід. Наприклад, глини морського походження змінюють своє ρпит в інтервалі від 1-2 до 10-15 Ом·м, що збільшується зі зростанням великих фракцій та геологічного віку порід і зменшується для пелітових, узбережних та дельтових утворень. У континентальних глин питомий опір змінюється у межах 5-20 Ом·м, суглинків - 15-25 Ом·м, супісків - 25-80 Ом·м. Низький опір мають і глинясті лупинці, слабкометаморфізовані різновиди яких можуть мати ρпит близьке до 5-20 Ом·м, що швидко збільшується зі зростанням степенем метаморфізму.

Результати визначення поляризаційності гірських порід наведені на рис 10 і дають змогу зробити такі висновки:

  • поляризаційність вологонасиченого піску становить десяті частки відсотка, а потім зі зменшенням вологості поступово збільшується і досягає максимуму (2 - 3%), коли вологість становить 2-5% (товщина плівки близька товщині подвійного електричного шару);

  • оптимальний розмір пор (спостерігаемо максимальний поляризаційний ефект) - 8 - 10 мкм )

  • глини в природних умовах, зазвичай, містять значну кількість розчинених солей і мають велику питому поверхню порівняно з іншими осадовими породами, а тому їхня поляризаційність менша, ніж у інших порід (пісків тощо);

  • поляризаційність порід, насичених прісною (солодкою) водою, більша, ніж насичених мінералізованою, а у випадку, коли остання перевищує 5 г/л поляризаційність взагалі відсутня (дорівнює нулю);

  • споляризованість безрудних масивних кристалічних порід має унікальну серед фізичних параметрів стабільність і практично не залежить від їхнього складу, зберігаючи значення 1 - 2% у всіх видів магматичних і метаморфічних порід ;

  • зміни температури мало впливають на поляризаційність і вона практично не змінюється у різних кліматичних умовах;

  • наявність у породі всього 1% мінералів з електронною провідністю збільшує її до 4 - 5%,тобто приблизно удвічі; якщо такі мінерали є не ізольованими(вкраплениками), а утворюють плівки або прошарки,то ефект спричиненої поляризаційності ще збільшується;

  • значна поляризаційністьбагатьох руд, яка часом досягає декількох десятків відсотків,зазвичай зумовлена наявністю в них електронно-провідних мінералів;

  • крім рудних зон збільшення поляризаційності характерно і для порід з графітом та вуглистою речовиною, які дуже часто є рудовмісними

. Найбільшу відносну діелектричну проникливість має вода, для якої ця величина дорівнює 80. Що стосується порід то за матеріалами багаточисельних вимірювань у осадових відкладів вона змінюється від 5 до 15, причому мінімальні значення зафіксовані у сухих, сильно поруватих осадових породах, максимальні - у тих же породах, але повністю насичених водою. Тобто є всі підстави стверджувати, що діелектрична проникливість зростає зі збільшенням поруватості і вологонасиченності. .

У породах, де зафіксовані малі значення вологості, зазначають пряму пропорційну залежність діелектричної проникності від неї (за А.С. Тарховим), тоді як для великих значень вологості збільшення діелектричної проникності поступово сповільнюється і за умови, коли цей параметр перевищує 4 -5% криві виходять на горизонтальну (поземну) асимптоту (рис 9).

Діелектрична проникливість мінералів змінюється від декількох (кіновар, сфалерит, кварц, хлориди) до десятків (пірит, піротин, молібденіт, арсенопірит та ін.) одиниць, тоді як у більшості породотвірних силікатів коливається у межах 6 - 8 одиниць ( див. Табл.. 1 )

Рис. 9. Залежність діелектричної проникності від вологості

(за Е.І. Пархоменко): 1 – доломіт, 2 – мергель, 3 – алевроліт

Залежність між електричними та інженерно-геологічними і гідрогеологіч-ними параметрами детальніше буде розглянуті в наступному розділі.

Результати вимірювань електродних потенціалів низки сульфідних мінералів стосовно стандартного (водневого) електрода, потенціал якого вважають нульовим, у нормальному розчині КС1 (за матеріалами Г. Б. Свєшнікова) наведені у табл. 1 і свідчать, що відносна зміна стрибка потенціалу на контакті рудний поклад–вмісне середовище зумовлена різницею мінералогічного складу руд різних частин покладу, а у випадку зонального розташування мінералів може досягати декількох сотень мілівольтів, тобто є всі підстави стверджувати, що мінералогічний склад може бути провідним або одним із провідних потенціало-визначальних чинників у випадку однорідного складу підземних вод.

В інших розчинах стаціонарні потенціали тих же мінералів можуть суттє­во відрізнятися від наведених у табл. 1, хоча така послідовність мінералів (за їхніми електродними потенціалами), зазвичай, зберігається. Наприклад, зміна концентрації від 0 до 10 мг/л спричинює зміну окисно-відновного потенціалу

Таблиця 1

Результати визначення електродних потенціалів мінералів стосовно вод­невого електрода, за Г. Б. Свєшніковим

Мінерал

Значення потенціалу мінералу, В

міп

мах

Модальне

Марказит

-

-

0,56

Пірит

0,41

0,48

0,46

Халькопірит

0,33

0,42

0,38

Арсенопірит

-

-

0,35

Борніт

0,29

0,35

0,32

Піротин

0,25

0,34

0,30

Пентландит

-

-

0,22

Галеніт

0,14

0,29

0,20

Молібденіт

-

-

0,14

Сфалерит (марматит)

-

-

0,12

Шмальтин

0,11

0.12

0,12

на 0,8–1,0 і навіть 1,2 В, а зміна рН системи на одиницю (від 2 до 14), за М. Сато і Н. Мунеєм, при­зводить до зміни потенціалу на 0,057–6,059 В.

1.4 Пружні віластивості гірських порід.

Переважна

середовища і повністю відновлюють свої розміри та форму, тому для них можна застосувати закон Гука, відповідно до якого малі деформації сумірні (пропорційні) прикладеному навантаженню.

Для характеристики пружного середовища використовують різні константи, серед яких найважливішими є модуль Юнга, коефіцієнт Пуасона, модуль зсуву та модуль деформації.

Модуль Юнга (динамічний модуль пружності) характеризує здатність тіл чинити опір розтягуванню або стискуванню і відповідає напруженню, що спричиняє видовження стрижня одиничного перерізу вдвічі:

Ed =pl/l), (8)

де p - нормальне розтяжіння; Δl/l - відносне видовження.

Вимірюють модуль Юнга в Ньютонах на квадратний метр (Н/м2) або Паскалях. Для гірських порід Еd змінюється у межах 1,5 10-4-0,6 10-5 Н/м2.

Коефіцієнт Пуасона ν - коефіцієнт поперечного стискування або кое-фіцієнт пропорційності (сумірності) між відносним скороченням (подов-шанням) стрижня під дією навантаження і відносним збільшенням (скоро-чення*м) його поперечних розмірів. Це значення безрозмірне і для більшості порід менше від 0,5.

Модуль зсуву G визначає здатність тіл протидіяти зміні форми зі збереженням об’єму і відповідає відношенню тангенційного напруження r до кута зсуву a:

G=r/a. (9)

Вимірюють його в Ньютонах на метр (Н/м).

Модуль деформації Едеф - це відношення нормального напруження σn до повного відносного видовження EΣ і його використовують для розрахунків будь-яких інженерних споруд. Зазвичай, значення σn та EΣ отримують внаслідок статичних навантажень під час випробувань порід у лабораторних умовах.

Деформації, що виникають у тілах під впливом механічного напруження, спричинюють утворення поздовжних P та поперечних S хвиль (рис. 10).

Поздовжні хвилі виникають внаслідок деформації розтягування-стискування, коли зміщення частинок відбувається у напрямі, що збігається з напрямом поширення хвилі. Тобто, поздовжні хвилі поширюються завдяки зміні елементарних об’ємів середовища (див. рис. 10, 11).

Поперечні хвилі зумовлені деформацією форми середовища (об’єкта) і можуть існувати тільки в твердих тілах. Поширення поперечної хвилі - це переміщення зони ковзання верств одного середовища стосовно іншого, а тому елементарні частинки пересуваються у площині, простопадній (перпендикулярній) до напряму руху хвиль (див. рис. 10, 11).

Рис.10. Схема зміщення частинок середовища (1) під час поширення поздовжної (а), поперечної (б) і поверхневих хвиль Релея (в) (2 - напрям поширення хвилі).

Рис. 11. Деформації об’єму (а), зсуву (б) та вектор напруженості деформувального поля (в).

На вільній поверхні середовища виникає особливий різновид коливань, названий поверхневими хвилями (хвилі Релея - R), під час проходження яких частинки переміщуються за траекторіями, наближеними до еліптичних зі швидкістю Vr=0,9Vs (див. рис. 11).

У більшості гірських порід поздовжні хвилі поширюються приблизно в 1,73 раза швидше, ніж поперечні. Для конкретних умов верхньої частини геологічного розрізу це співвідношення може коливатися у значних межах, що досить часто дає змогу використовувати цей параметр для визначення особливостей досліджуваного середовища.

Чинниками, від яких залежить швидкість поширення пружних хвиль (пружні властивості) у породах, є:

  • речовинний склад та характер структурних зв’язків (рис. 12);

  • щільність гірських порід;

  • порожнинність порід та їхній водонасичення (рис. 13);

  • ступінь та тип метаморфізму;

  • вік (глибина залягання), а точніше інтенсивність тиску навколишніх порід;

  • температура.

Наприклад, в інтрузивних породах основного складу швидкості пружних хвиль більші, ніж у кислих; а в ефузивних різновидах вони зазвичай менші, ніж в їхніх інтрузивних аналогах (рис. 12).

Рис. 12. Швидкості пружних хвиль у гірських породах (1 - сипкі піски, 2 - породи природної вологості, 3 - породи повного водонасичення)

Менші швидкості, ніж у вивержених породах, спостерігають в осадових, особливо в глинястих відкладах, зв’язки в яких суттєво залежать від водно-колоїдної взаємодії.

Статистичне опрацювання значної кількості як лабораторних, так і натурних спостережень свідчить, що швидкості поширення як поздовжних, так і поперечних хвиль тісно пов’язані зі щільністю гірських порід, зростаючи зі

Рис. 13. Залежність υp від вмісту кремнезему в магматичних породах (а), вмісту кальциту в карбонатних породах (б) та поруватості для консолідованих порід (1 - доломіт, 2 -вапняк, 3 - пісковик).

Рис. 15. Залежність υp від водонасиченості пісків (діаметр частинок: 1 - 1 мм, 2 - 0,1 мм)

збільшенням останньої. В середньому для усіх типів порід цю залежність визначає регресивний зв’язок:

σ=0,23Vр0,25, (10)

де σ - щільність гірських порід, Vр - швидкість проходження поздовжніх хвиль.

Наведене співвідношення часто використовують для оцінювання густини порід за їхніми швидкісними характеристиками у тому випадку, коли без-посередні вимірювання виконати неможливо (оцінювання щільності глибоко залягаючих верств гірських порід, які не можна розкрити свердловинами).

Усі види метаморфізму, що приводять до збільшення зв’язків між окремими складовими породи (скварцювання), спричинюють збільшення швидкості Vр та Vs, і, навпаки, метаморфізм, що приводить до зменшення зв’язків між окремими складовими породи (перетворення вапняків і доломітів у їхні глинясті різновиди), спричинює значне зниження швидкості поширення пружних хвиль.

Щодо фізичної природи поперечних хвиль, то вони не поширюються у рідкому середовищі, у зв’язку з чим зміна вологості практично не впливає на Vs навіть після переходу пухких порід у стан повного водонасичення. Тому рівень ґрунтових вод не є сейсмічною границею для поперечних хвиль, що є додатковим критерієм індикації цього рівня як заломлювальної межі для хвиль Vs. За умови збільшення вологості W швидкість поздовжніх хвиль незначно змінюється до моменту повного водонасичення, коли вона стрімко зростає (див. рис. 15).

Зміни позитивних температур незначно впливають на швидкісні параметри геологічного розрізу, тоді як негативні суттєво змінюють їх завдяки переходу води в лід, внаслідок чого модулі всіх гірських порід збільшуються приблизно за логарифмічним законом, проте з різним градієнтом цього зростання для різних порід. Тому цілком зрозуміло, що збільшення льодистості призводить до поступового досить швидкого зростання Vр і дещо повільнішого - Vs, а швидкості у льодонасичених пухких породах досить часто можуть перевищувати спостережувані в мінеральному скелеті.

Залежність пружних властивостей гірських порід від мінералізації води і льоду, що заповнюють пори і порожнини - незначна.

Усім типам гірських порід притаманне зменшення швидкості хвиль зі збільшенням порожнинності (див. рис. 14).

Для поземно залягаючих осадових гірських порід і кислих інтрузивів притаманно збільшення швидкості проходження хвиль зі збільшенням їхнього віку (збільшення щільності завдяки зростанню тиску перекривних порід).