- •0 Термодинамическая система
- •Основные определения
- •1.2 Понятие об уравнении состояния
- •1.3 Уравнение состояния идеального газа
- •1.4 Термодинамический процесс
- •1.5 Теплоемкость газа
- •1.6 Газовые смеси
- •Раздел 2
- •2.1 Первый закон термодинамики
- •2.2 Внутренняя энергия
- •2.3 Работа и теплота процесса
- •2.4 Энтальпия
- •2.5 Исследование термодинамических процессов
- •2.6 Изохорный процесс
- •2.7 Изобарный процесс
- •2.8 Изотермический процесс
- •2.9 Адиабатный процесс
- •2.10 Политропные процессы
- •2.11 Обратимые и необратимые процессы
- •Раздел 3
- •3.1 Понятие о цикле
- •3.2 Второй закон термодинамики
- •3.3 Термический к.П.Д. Цикла теплового двигателя
- •3.4 Цикл карно
- •3.5 Свойства обратимых и необратимых циклов
- •3.7 Энтропия изолированной системы
- •3.8 Потеря полезной работы в необратимых процессах
- •3.9 Координаты т-s
- •3.10 Координаты I - s
- •Раздел 4
- •4.1 Уравнение неразрывности
- •4.2 Первый закон термодинамики для движущегося газа
- •4.3 Уравнение сохранения энергии газового потока
- •4.4 Параметры адиабатно заторможенного потока
- •4.5 Критические параметры потока
- •4.6 Уравнение сохранения энергии в параметрах заторможенного потока. Частные случаи уравнения
- •4.7 Обобщенное уравнение бернулли
- •4.8 Изменение полной температуры и полного давления
- •4.9 Газодинамические функции
- •Раздел 5
- •5.1 Форма канала, обеспечивающая разгон или торможение газового потока
- •5.2 Идеальное течение газа в соплах
- •5.3 Идеальное течение газа в суживающихся соплах
- •5.4 Идеальное течение газа в соплах лаваля
- •5.5 Разгон и торможение потока газа
- •Раздел 6
- •6.1 Термодинамический метод исследования циклов
- •6.2. Циклы реактивных двигателей
- •6.3 Циклы поршневых двигателей
- •Раздел 7
- •7.1 Уравнение состояния реального газа
- •7.2 Фазовые диаграммы
- •7.3 Энтропийные диаграммы реального газа
- •7.4 Дросселирование газа
- •7.5 Паровой цикл карно
- •7.6 Цикл ренкина
- •7.7 Циклы атомных энергетических установок
- •7.8 Энергетические установки с мгд-генератором
- •Раздел 8
- •8.1 Основные понятия и определения
- •8.2 Цикл воздушной холодильной установки
- •8.3 Цикл паровой компрессионной холодильной установки
- •8.4 Цикл теплового насоса
- •Литература
2.3 Работа и теплота процесса
Как отмечалось выше, работа и теплота представляют собой две различные формы обмена энергией.
2.3.1 Работа. Рассмотрим равновесный процесс расширения газа в цилиндре с поршнем. Пусть изменение состояния газа в цилиндре изображается в координатах р, υ кривой 1-2 (рис. 2.4). Газ, расширяясь, совершает работу против внешних сил. Нетрудно видеть, что при бесконечно малом перемещении поршня на расстояние dx работа, совершаемая газом, равна:
dL = p·F·dx = p·dV ,
где F
- площадь поршня, а работа, совершаемая
газом в процессе 1-2.
Полная работа, совершаемая газом в
процессе 1-2, вычисляется из уравнения
.
Для 1 кг газа удельная работа равна:
,
(2.10)
а в элементарном процессе:
dl = p·dυ , (2.11)
где υ – удельный объем. Очевидно, что удельная работа l в p−υ координатах, эквивалентна площади υ1-1-2-υ2, расположенной под кривой термодинамического процесса 1-2.
В термодинамике газовых потоков принято следующее правило знаков: работа, совершаемая рабочим телом над внешней средой (работа расширения, dυ > 0), считается положительной, а работа, совершаемая внешней средой над рабочим телом (работа сжатия, dυ < 0) – отрицательной.
Рассмотрим два процесса перехода тела из состояния 1 в состояние 2 (рис. 2.5). Хотя в процессах a и b исходные и конечные состояния тела одинаковы, но величина работы в этих процессах различна. Таким образом, величина работы зависит от пути процесса, т.е. она является функцией процесса. С учетом (2.11) уравнение первого закона термодинамики можно представить так:
dq = du + p·dυ , (2.12)
а для идеального газа с учетом (2.9):
d
q
= cυ·dT
+ p·dυ.
(2.13)
Аналогичные выражения можно получить и для уравнений первого закона термодинамики в интегральной форме.
2.3.2 Теплота. Так как удельная работа l зависит от пути процесса, а величина Δu не зависит от него, то из (2.2) следует, что теплота является функцией процесса, т.е. ее величина зависит от пути термодинамического процесса. В термодинамике газовых потоков принято следующее правило знаков: теплота, подведенная к телу, считается положительной, а отведенная от него – отрицательной.
Определение количества теплоты – важный элемент расчета термодинамического процесса. Наиболее просто эта задача решается при постоянной теплоемкости процесса:
q = c·(T2 – T1). (2.14)
В случае переменной теплоемкости возможны различные способы расчета.
Расчет с помощью формул теплоемкости. Из (1.5) следует:
.
(2.15)
Подставив значение истинной теплоемкости c = a + b·t + d·t2 в уравнение (2.15) и проинтегрировав его, получим
.
(2.16)
Расчет с использованием значений средних теплоемкостей. Из (1.6) следует:
Если перейти от градусов Кельвина к градусам Цельсия и использовать в качестве начального значения температуру t0 = 0ºC, то будем иметь:
. (2.17)
Для расчета по уравнению
(2.17) необходимы данные по средним
значениям теплоемкости
,
которые представлены в виде таблиц,
графиков и т.д.
Расчет с использованием истинной теплоемкости. Для многих газов в достаточно широком интервале температур зависимость теплоемкости от температуры является практически линейной: c = a + b T. Подставив это уравнение в (2.15) и проинтегрировав его, получим:
,
Здесь первый сомножитель представляет собой истинную теплоемкость при средней температуре Тср. = 0,5(Т2 + Т1). Следовательно, в данном случае теплота может быть найдена по формуле:
q = cТср. (T2 – T1) , (2.18)
где cТср. – истинная теплоемкость при температуре Тср. Указанные способы учета переменности теплоемкости могут быть использованы не только для определения величины q, но и для нахождения других величин, например, изменения внутренней энергии.
В заключение отметим, что при определении теплоты процесса следует использовать величину теплоемкости, которая соответствует данному процессу. Например, для процесса p = const при постоянной теплоемкости имеем: q = cр (T2 - T1), а для процесса υ = const: q = cυ (T2 - T1).
