Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
уч_пособ_оконч (1).doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
4.53 Mб
Скачать

7.2 Фазовые диаграммы

7.2.1 Фазовая p–t диаграмма. При рассмотрении отдельных фаз чистого вещества обычно имеют в виду его агрегатные состояния: твердое, жидкое и газообразное. Однако, в общем случае понятие «фаза» несколько шире понятия «агрегатное состояние», так как некоторые вещества в твердом состоянии, например, лед, углерод могут иметь несколько фаз.

Фазовый переход, т.е. переход вещества из одной фазы в другую, сопровождается изменением свойств вещества, выделением или поглощением теплоты (теплота фазового перехода). Равновесное сосуществование нескольких фаз возможно лишь при определенных сочетаниях параметров состояния (например, температуры и давления). Знание условий равновесного сосуществования различных фаз является важным для решения многих технических задач, например. для определения условий закипания жидкостей в гидравлических системах, оценки условий возникновения кавитации в насосах и др.

Анализ условий термодинамического равновесия фаз базируется на правиле фаз Гиббса. Оно устанавливает связь между числом независимых параметров состояния (степеней свободы системы) ψ, числом фаз k и числом компонентов системы n. Математически правило фаз Гиббса формулируется следующим образом:

ψ = n – k + 2 .

Для чистого вещества (однокомпонентная система n = 1) правило фаз Гиббса имеет вид:

ψ = 3 – k .

В этом случае однофазная система (твердое тело, жидкость или газ) имеет две степени свободы, т.е. два независимых параметра состояния. Это означает, что если произвольно задать два параметра состояния (например, p и t), то все другие будут определены однозначно. Одновременно это означает, что в однофазном состоянии вещество может существовать при произвольных сочетаниях p и t.

Двухфазная система (k = 2) обладает только одной степенью свободы (ψ = 1); здесь произвольно может быть задан лишь один параметр состояния. Следовательно, равновесное сосуществование двух фаз (твердой и жидкой, жидкой и газообразной, твердой и газообразной) возможно лишь при определенном сочетании значений p и t; т.е. каждому значению p соответствует вполне определенная температура, при которой возможно сосуществование фаз.

На рис. 7.2 изображена типичная фазовая p t диаграмма с линиями фазового равновесия. Здесь АК – линия фазового равновесия жидкости и газа (пара), АС – твердого тела и жидкости; АВ – линия твердого состояния и газа. Иными словами: АК – линия парообразования (конденсации), АС – линия плавления (затвердевания), АВ – линия сублимации (десублимации). Линию АК называют также линией насыщения, которая заканчивается критической точкой К. Три линии пересекаются в одной точке А, которая называется тройной точкой. В этой точке одновременно существуют три фазы, т.к. согласно правилу фаз Гиббса при k = 3 число степеней свободы однокомпонентной системы равно нулю (ψ = 0). Например, для воды в тройной точке pА = 616 Па, tА = 0,01°С, а для двуокиси углерода pА = 0,518 МПа, tА = – 56,7°С.

Пользуясь фазовой диаграммой, можно установить, в каком состоянии (твердом, жидком, газообразном, двух- или трехфазном) будет находиться конкретное вещество при заданных значениях p и t. Кроме того, с помощью фазовой диаграммы можно определить температуру фазового перехода при заданном давлении и наоборот.

Фазовая диаграмма устанавливает также характер перехода вещества из одного состояния в другое. Например, при p1 > pА переход из твердого состояния в газообразное происходит через жидкое. При давлении p2 < pА существование вещества в жидком состоянии невозможно; здесь твердая фаза переходит в газообразную, минуя жидкую стадию. Вместе с тем при давлениях, превышающих давление в критической точке, невозможно сосуществование газообразной и жидкой фаз, а при температурах, превосходящих температуру в критической точке (см. далее), вещество существует лишь в газообразной (парообразной) фазе.

7.2.2 Фазовая p – v диаграмма. Процессы изменения параметров реального газа при фазовом переходе жидкость-пар наиболее наглядно можно представить с помощью pv диаграммы (рис. 7.3).

На данной диаграмме область равновесия двух фаз («жидкость – пар») изображается не линией, а занимает некоторую площадь. Здесь можно выделить три области: I – жидкое состояние, II – двухфазное состояние (фазовое равновесие «жидкость-пар») и III – газообразное (парообразное) состояние. Кривая МК – является геометрическим местом точек, определяющих состояние жидкости, нагретой до температуры кипения (насыщения) при соответствующем давлении. Она отделяет область жидкости от области насыщенных паров и называется пограничной кривой жидкости (здесь х = 0).

Точки кривой NК определяют состояние сухого насыщенного пара. Эта кривая отделяет область насыщенных паров от области перегретых паров и называется пограничной кривой пара; здесь х = 1,0. На p-v диаграмме в области двухфазного состояния нанесены линии постоянной сухости пара (х1; х2 и т.д.). С ростом давления и, соответственно температуры, при которых происходит фазовый переход, удельный объем кипящей жидкости увеличивается, а удельный объем насыщенного пара уменьшается. При некотором, вполне определенном для каждого вещества давлении, пограничные кривые сходятся к точке К, которая называется критической точкой.

На рис. 7.3 нанесены несколько изотерм (Т = const). Видно, что в области перегретого состояния изотерма имеет вид, близкий к изотерме идеального газа. В области двухфазного состояния вещества («жидкость–пар») изотерма является одновременно и изобарой. Это непосредственно вытекает из правила фаз Гиббса, согласно которому двухфазная однокомпонентная система обладает только одной степенью свободы. В области жидкого состояния рост давления приводит к незначительному изменению объема жидкости из-за малой сжимаемости. При критической температуре горизонтальный участок превращается в точку (критическая точка), которая является точкой перегиба на этой изотерме. Состояние вещества в этой точке характеризуется критическими параметрами: давлением рк, температурой Тк и удельным объемом vк. Критические параметры некоторых веществ приведены в табл.7.1.

Таблица 7.1 Критические параметры некоторых веществ

Вещество

tк, ºC

рк, МПа

Вещество

tк, ºC

рк, МПа

Гелий

-267,9

0,228

Аммиак

132,3

11,28

Водород

-239,9

1,294

Этиловый спирт

Азот

147,0

3,393

Вода

374,15

22,127

Кислород

-118,4

5,07

Углерод

~ 6000

~ 700

Двуокись

кислорода

31,04

7,412

Ртуть

1480

147,1

Критическая точка K принадлежит одновременно обеим пограничным кривым и соответствует состоянию вещества, при котором отсутствует разница между жидкостью и паром. Это иллюстрируется зависимостью теплоты парообразования от температуры для воды (рис. 7.4), из которой видно, что в критической точке теплота парообразования становится равной нулю (r = 0). При температуре выше критического значения изотермы не имеют горизонтальных участков. При этих температурах для любого давления вещество находится в парообразном (газообразном) состоянии, а вид изотерм по мере увеличения температуры приближается к изотермам идеального газа.

Из p v диаграммы следует важный вывод о различном характере перехода жидкости в пар при различных давлениях. При докритических давлениях при подводе к жидкости теплоты последовательно происходят нагрев жидкости до температуры кипения, парообразование, во время которого вещество находится в двухфазном состоянии, и перегрев пара. При сверхкритических давлениях (линия x – y) переход из жидкого состояния в газообразное происходит непрерывно, минуя двухфазное состояние. Граница между жидкой и газообразной фазами в этом случае условна.

П ри переходе жидкости в пар при докритических давлениях осуществляется скачкообразное изменение свойств вещества. Как следует из рис. 7.5, где показана зависимость плотности водорода от температуры при двух давлениях, при сверхкритическом давлении этот процесс идет с непрерывным накапливанием различий между жидкостью и паром. Это следует иметь в виду при проектировании и анализе работы технических устройств, в которых возможны фазовые переходы (теплообменники, системы охлаждения, холодильные установки, парогенераторы силовых и энергетических установок).

.

Используя критические параметры вещества можно определить постоянные а и b в уравнении Ван-дер-Вальса: а = 27 R2 T2k/64 Pk, b = R Tk/8 Pk , R = 8 Pk vk/3 Tk. Параметры вещества, отнесенные к соответствующим параметрам в критическом состоянии, называются приведенными параметрами:

.

Здесь рк, Тк – критические значения давления и температуры данного вещества. Используя приведенные параметры, уравнение Ван-дер-Вальса можно записать в следующем виде , которое называется приведенным уравнением состояния Ван дер Вальса. Для всех веществ в критической точке приведенные параметры имеют одно и то же значение, равное единице.

Для практических расчетов с погрешностью 15% можно использовать уравнение состояния реального газа в следующем виде:

p·υ = zRT , (7.2)

которое получено на основе закона соответственных состояний. Здесь z – коэффициент сжимаемости, зависящий от давления p и температуры T и определяемый экспериментально. На основе анализа опытных данных установлено, что с определенной точностью функция z = z (π, τ) является универсальной, т.е. достаточно общей для различных веществ. Для конкретного вещества она может быть определена из z-π диаграммы, приведенной на рис. 7.6.

Отношение zk = R·Tk / pk·vk в критической точке называется критическим коэффициентом и с учетом вышеприведенных соотношений для критических параметров (a, b, R) является постоянным и равным 8/3 =2,67.