Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ссесия матем.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
443.79 Кб
Скачать

Основные свойства логарифмической функции:

1. Областью определения логарифмической функции будет являться все множество положительных вещественных чисел. Для краткости его еще обозначают R+. Очевидное свойство, так как каждое положительное число имеет логарифм по основанию а.

2. Областью значения логарифмической функции будет являться все множество вещественных чисел.

3. Если основание логарифмической функции a>1, то на всей области определения функции возрастает. Если для основания логарифмической функции выполняется следующее неравенство 0<a

4. График логарифмической функции всегда проходит через точку (1;0).

5. Возрастающая логарифмическая функция, будет положительной при x>1, и отрицательной при 0<х<1.

6 . Убывающая логарифмическая функция, будет отрицательной при х>1, и положительной при 0<x<1:

На следующем рисунке представлен график убывающей логарифмической функции - (0<a<1):

7. Функция не является четной или нечетной. Логарифмическая функция – функция общего вид.

8. Функция не имеет точек максимума и минимума.

19) Функция синус

Область определения функции — множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная.

Функция нечетная: sin(−x)=−sin x для всех х ∈ R.  График функции симметричен относительно начала координат.

Функция периодическая с наименьшим положительным периодом 2π:

sin(x+2π·k) = sin x, где k ∈ Z для всех х ∈ R.

sin x = 0 при x = π·k, k ∈ Z.

sin x > 0 (положительная) для всех x ∈ (2π·kπ+2π·k), k ∈ Z.

sin x < 0 (отрицательная) для всех x ∈ (π+2π·k2π+2π·k), k ∈ Z.

Функция возрастает от −1 до 1 на промежутках:

Функция убывает от −1 до 1 на промежутках:

Наибольшее значение функции sin x = 1 в точках:

Наименьшее значение функции sin x = −1 в точках:

Функция косинус

Область определения функции — множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная.

Функция четная: cos(−x)=cos x для всех х ∈ R.  График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом 2π:

cos(x+2π·k) = cos x, где k ∈ Z для всех х ∈ R.

cos x = 0 при

cos x > 0 для всех

cos x < 0 для всех

Функция возрастает от −1 до 1 на промежутках:

Функция убывает от −1 до 1 на промежутках:

Наибольшее значение функции sin x = 1 в точках:

Наименьшее значение функции sin x = −1 в точках:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]