- •Глава 1
- •1315 1Эв0 Перспектива 1315 1980 Перспектива 1315 1380 Перспектива Рис. 1.7. Продолжение
- •1.2. Виды энергетических ресурсов и их запасы
- •Глава 3
- •Глава 4
- •Электроэнергетика ссср
- •1,0 2,2 3,2 3,3 5,8 Sffl
- •Применение электрической энергии
- •Потребление электрической энергии
- •Преимущества объединения энергетических
- •У Рис. 4.38. Схема регулирования частоты переменного тока правление электроэнергетическими -системами
- •5 1. Соотношение естественных явлении в природе с процессами в искусственных установках
- •Энергетика и окружающая среда.
- •Биосфера и технический прогресс
- •Глава 1. Энергетические ресурсы Земли
- •1.1. Использование энергетических ресурсов
- •Глава 5. Влияние техники и энергетики на биосферу . .
- •Биосфера и технический прогресс
- •1 См.: Фалин в. У семи нянек.—Известия, 1984, 16 июня.
Глава 3
ВОЗМОЖНЫЕ СПОСОБЫ ПРЕОБРАЗОВАНИЯ
РАЗЛИЧНЫХ ВИДОВ ЭНЕРГИИ
В ЭЛЕКТРИЧЕСКУЮ
3.1. НЕОБХОДИМОСТЬ В РАЗВИТИИ СПОСОБОВ
ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ
Мировое потребление энергии во всех ее видах, в том числе и электроэнергии, находится в непосредственной зависимости от численности населения. Население Земли растет особенно значительно в последнее время и к 2000 г. составит, по существующим прогнозам, примерно 6 млрд. человек. Динамика роста населения во второй половине XX в. такова, что к 2000 г. население возрастет более чем в 2 раза по сравнению с 1950 г. (табл. 3.1). Большая доля в приросте населения приходится на развивающиеся страны. Наряду с увеличением общего потребления энергии в мире растет также доля энергии, приходящаяся на одного человека (табл. 3.1).
Огромные потребности в энергии ставят перед человечеством проблему разработки новых способов ее получения. В настоящее время уже нельзя довольствоваться существующими, ставшими традиционными способами преобразования различных видов энергии в электрическую из-за ограниченности запасов органического топлива, которое расточительно используется при сжигании в топках. КПД современных ТЭС не превышает 40%. Это означает, что большая часть получаемой теплоты теряется и оказывает пагубное «тепловое загрязнение» на
Таблица 3.1
|
|
Год |
|
|
Энергетические мощности и |
1950 |
1970 |
1980 |
2000 |
потребление энергии |
|
Население, млрд. чел. |
||
|
1,97 |
2,87 |
3,6 |
6,0 |
Общие энергетические мощности, млн. кВт |
223 |
1070 |
2200 |
7200 |
Энергетическая мощность в расчете на 1 человека, кВт |
0,1 |
0,4 |
0,6 |
1,4 |
Общее потребление электроэнергии, млрд. кВтХ Хч/год |
950 |
4760 |
10 000 |
33 000 |
Потребление электроэнергии на 1 человека, кВтХ Хч/год |
500 |
1700 |
2900 |
6200 |
близрасположенные водоемы. Кроме того, при сжигании топлива плохо используется вещество, вовлеченное в процесс преобразования энергии. КПД по использованию вещества составляет у ТЭС ничтожно малую величину. Следовательно, процесс сжигания топлива сопровождается огромными выбросами побочных продуктов, загрязняющих окружающую среду. Поэтому разработка новых способов преобразования энергии, позволяющих уменьшить выбросы отходов в атмосферу, относится к важнейшим социальным проблемам. Это, конечно, не означает, что современные ТЭС, ГЭС и АЭС не соответствуют духу времени и их строительство будет прекращено.
В обозримом будущем ТЭС останутся одними из основных, поэтому совершенствование их конструкции, улучшение термодинамического цикла актуально для большой энергетики.
Большие надежды возлагаются на АЭС, внедрение которых происходит во многих странах мира с невидан
но
ными в истории техники темпами. Ожидается, что к 2000 г. суммарная мощность АЭС в мире составит 3500— 3600 ГВт, в то время как общая энергетическая мощность достигнет 7000—7200 ГВт. Иными словами, предполагается, что не менее 50% всей располагаемой человечеством энергетической мощности будет приходиться на АЭС1. Приведенные цифры свидетельствуют о большом темпе развития, в особенности если учесть, что первая АЭС была построена в 1954 г.
По использованию вещества на АЭС КПД значительно выше, чем на ТЭС (см. табл. 2.1), но при условии, что это вещество специально подготовлено для выполнения функций ядерного топлива. При этом на АЭС классический термодинамический цикл преобразования теплоты в механическую энергию, которая затем генераторами преобразуется в электрическую, приводит к большим потерям энергии, получаемой в реакторах. Таким образом, на современных АЭС не удается избежать основных принципиальных недостатков, свойственных ТЭС.
Заманчива перспектива науки — получить эффективные способы непосредственного преобразования ядерной энергии в электрическую. Предвидев то огромное значение, которое ядерная энергия призвана сыграть в истории человечества, Герберт Уэллс в начале XX в. писал: «...уже занималась заря мощи и свободы под небом, озаренным надеждой, перед ликом науки, которая, подобно благодетельной богине, держала в сильных руках над кромешным мраком человеческой жизни изобилие, мир, ответ на бесчисленные загадки, ключи к славнейшим деяниям, ожидая, пока люди соблаговолят их взять...» 1.
Широко используемые во многих странах мира ГЭС, сооружаемые на реках, и в дальнейшем будут развиваться как весьма современные преобразователи энергии в возобновляемой форме. В связи с возрастающим загрязнением биосферы и ограниченностью запасов топлива повышается интерес к «чистым» электростанциям, использующим энергию морских приливов, теплоту земных недр, энергию солнечной радиации.
Таким образом, вместе с развитием цивилизации и технического прогресса будут совершенствоваться суще
ствующие, ставшие классическими, и создаваться новые, более эффективные способы преобразования энергии. В отдаленной перспективе человечество будет располагать арсеналом качественно иных источников энергии, и то, чем оно пользуется сегодня, неизбежно отойдет в прошлое, как в настоящее время стали историческими паровые машины.
Несмотря на бурный прогресс в энергетике и высокие темпы наращивания энергетического потенциала планеты, производство энергии недостаточно. Все еще приходится считаться с тем реальным фактом, что большая часть населения планеты голодает, страдает от нищеты и загрязнения окружающей среды.
Кроме того, потребление энергии в мире (различных странах) крайне неравномерно, а как показано выше, потребление энергии в стране определенным образом связано с культурным уровнем (см. с. 19) ее населения. Развитие цивилизации и производство материальных ценностей также непосредственно связаны с количеством потребляемой энергии и ее качеством.
Для улучшения условий жизни людей на планете, значительного повышения производительности труда, изменения ландшафтов в широких масштабах, а также решения ряда других жизненно важных проблем наряду с созданием необходимых социальных условий развития важное значение имеет получение достаточно больших количеств энергии.
Как справедливо пишут американские ученые Г. Си- борг и У. Корлисс, «...дешевая энергия — это значит пища в достатке, обилие пресной воды, чистый воздух и все то, что принято называть признаками цивилизации»1.
Нехватка в современном мире продуктов сельского хозяйства ставит перед правительствами ряда стран проблему повышения их производства. В некоторой мере увеличение продуктов питания можно получить за счет использования пригодных для земледелия пустующих земель. Однако эти возможности имеются не во всех нуждающихся в продовольствии странах и, кроме того, они ограничены. В условиях быстрого увеличения численности населения решение проблемы продуктов питания возможно только путем интенсификации сельского хозяйства и в первую очередь орошения земли. Запасы пресной воды, пригодной для целей орошения, невелики.
Издавна люди мечтали использовать для нужд сельского хозяйства морскую воду, омывающую берега. Опреснение морской воды в промышленных масштабах становится возможным в настоящее время, когда с помощью наиболее пригодных для этого АЭС стало доступным получение в больших количествах теплоты, необходимой для дистилляции морской воды.
По существующим подсчетам ‘/з Земли из-за отсутствия влаги не заселена, в то время как V2 населения земного шара «теснится» на Vio суши. С помощью дешевых источников энергии можно было бы незаселенную территорию Земли превратить в процветающую, открывающую широкие горизонты для значительной части населения планеты.
Огромные количества энергии потребуются человечеству также для решения таких задач, как изменение климата на обширных пространствах путем изменения направления морских течений или сооружения водоемов с большой поверхностью испарения, преобразование ландшафта, строительство искусственных морских заливов и т. п.
Применяемые в современной энергетике способы получения электрической энергии сопровождаются большими потерями и основаны на расточительном использовании органического топлива. В будущем, по мере возрастания потребности в больших количествах , дешевой энергии и более рационального использования природного сырья для производства продуктов химической, фармацевтической промышленности и т. п., неизбежно на смену ставшим традиционными способам преобразования энергии придут качественно новые способы, в первую очередь способы непосредственного преобразования теплоты и химической энергии в электрическую.
Способы непосредственного преобразования различных видов энергии в электрическую основываются на физических явлениях и эффектах, открытых в прошлом. Их практическое применение совершенствуется по мере прогресса в науке и технике, накопления богатого экспериментального материала и использования новейшей технологии. Однако способы непосредственного получения электрической энергии пока не конкурентоспособны со способами преобразования энергии, применяемыми на современных электрических станциях. Непосредственное получение в больших количествах электроэнергии преобразованием теплоты, химической и ядерной энергии относится к новым, перспективным способам, которые несомненно станут основными и значительно увеличат доступные энергетические ресурсы планеты.
Непосредственное получение электрической энергии уже широко используется в автономных источниках энергии небольшой мощности, для которых показатели экономичности работы не имеют решающего значения, а важны надежность работы, компактность, удобство обслуживания, небольшая масса и т. д. Такие источники энергии применяются в системах сбора информации в труднодоступных местах Земли и в межпланетном пространстве, на космических аппаратах, самолетах, судах и т. п. Суммарная установленная мощность миллиардов автономных источников электроэнергии, несмотря на их скромные размеры, превосходит мощность всех стационарных электростанций, вместе взятых.
Работа автономных источников, непосредственно преобразующих различные виды энергии в электрическую, основана либо на химических, либо на физических эффектах. В химических источниках, например, таких, как гальванические элементы, аккумуляторы, электрохимические генераторы и т. п., используется энергия окислительно-восстановительных реакций химических реагентов. Физические источники электроэнергии, такие, как термоэлектронные генераторы, фотоэлектрические батареи, термоэмиссионные генераторы, работают в соответствии с различными физическими эффектами.
2. МАГНИТОГИДРОДИНАМИЧЕСКОЕ
ПРЕОБРАЗОВАНИЕ
ЭНЕРГИИ
К одной из центральных физико-технических задач энергетики относится создание магнитогидродинамических генераторов (МГД-генераторов), непосредственно преобразующих тепловую энергию в электрическую. Возможности практической реализации такого рода преобразования энергии в широких промышленных масштабах появляются в связи с успехами в атомной физике, физике плазмы, металлургии и ряде других областей.
Непосредственное преобразование тепловой энергии в электрическую позволяет существенно повысить эффективность использования топливных ресурсов.
Для современной электроэнергетики большое значение имеет открытый Фарадеем закон электромагнитной индукции, который утверждает, что в проводнике, дви
жущемся в магнитном поле, индуцируется ЭДС. При этом проводник может быть твердым, жидким или газообразным. Область науки, изучающая взаимодействие между магнитным полем и токопроводящими жидкостями или газами, называется магнитогидродинамикой.
Еще Кельвин показал, что движение в устье реки соленой воды в магнитном поле Земли вызывает появление ЭДС. Схема такого МГД-генератора Кельвина показана на рис. 3.1. В соответствии с законом электро
Рис. 3.1. Схема магнитогидродинамического генератора
Рис. 3.2. Схема работы МГД-генератора
магнитной индукции сила тока в проводиках 1, присоединенных к пластинам 2, опущенным в воду вдоль берегов реки, пропорциональна индукции магнитного поля Земли и скорости течения соленой морской воды в реке. При изменении направления течения воды в реке изменялось также и направление электрического тока в проводниках между пластинами.
Принципиальная схема действия современного МГД- генератора (рис. 3.2) мало отличается от приведенной на рис. 3.1. В рассматриваемой схеме между металлическими пластинами, расположенными в сильном магнитном поле, пропускается струя ионизированного газа, обладающего кинетической энергией направленного движения частиц. При этом в соответствии с законом электромагнитной индукции появляется ЭДС, вызывающая протекание электрического тока между электродами внутри канала генератора и во внешней цепи. Поток ионизированного газа — плазмы — тормозится под действием электродинамических сил, возникающих при взаимодействии протекающего в плазме тока и магнитного потока. Можно провести аналогию между возника
ющими силами и силами торможения, действующими со стороны рабочих лопаток паровых и газовых турбин на частички пара или газа. Преобразование энергии и происходит путем совершения работы по преодолению сил торможения.
Если какой-либо газ нагреть до высокой температуры (я±3000°С), увеличив тем самым его внутреннюю энергию и превратив в электропроводное вещество, то при последующем расширении газа в рабочих каналах МГД-генератора произойдет прямое преобразование тепловой энергии в электрическую.
МГД-генератор с паросиловой установкой. Принципиальная схема МГД-генератора с паросиловой установкой показана на рис. 3.3. В камере сгорания сжигается органическое топливо, получаемые при этом продукты в плазменном состоянии с добавлением присадок направляются в расширяющийся канал МГД-
г
1 — камера сгорания; 2 — теплообменник; 3 — МГД-генератор; 4 — обмотка электромагнита; 5 — парогенератор; 6 — турбина; 7 — генератор; 5 — конденсатор; 9 — насос
енератора. Сильное магнитное поле создается мощными электромагнитами. Температура газа в канале генератора должна быть не ниже 2000°С, а в камере сгорания 2500—2800°С. Необходимость ограничения минимальной температуры газов, покидающих МГД-генерато- ры, вызывается настолько значительным уменьшением электропроводности газов при температурах ниже 2000°С, что у них практически исчезает магнитогидродинамическое взаимодействие с магнитным полем.Теплота отработанных в МГД-генераторах газов вначале используется для подогрева воздуха, подаваемого в камеру сгорания топлива, и, следовательно, повышения эффективности процесса его сжигания. Затем в паросиловой установке теплота расходуется на образование пара и доведение его параметров до необходимых величин.
Выходящие из канала МГД-генератора газы имеют температуру примерно 2000°С, а современные теплооб-
не
менники, к сожалению, могут работать при температурах, не превышающих 800°С, поэтому при охлаждении газов часть теплоты теряется.
На рис. 3.4 (см. форзац II) схематически показаны основные элементы МГД-электростанции с паросиловой установкой и их взаимосвязи.
Трудности в создании МГД-генераторов состоят в получении материалов необходимой прочности. Несмотря на статические условия работы, к материалам предъявляют высокие требования, так как они должны длительно работать в агрессивных средах при высоких температурах (2500—2800°С). Для нужд ракетной техники созданы материалы, способные работать в таких условиях, однако они могут работать непродолжительное время — в течение минут. Продолжительность работы промышленных энергетических установок должна исчисляться, по крайней мере, месяцами.
Жаростойкость зависит не только от материалов, но и от среды. Например, вольфрамовая нить в электрической лампе при температуре 2500—2700°С может работать в вакууме или среде нейтрального газа несколько тысяч часов, а в воздухе расплавляется через несколько секунд.
Понижение температуры плазмы добавлением к ней присадок вызывает повышенную коррозию конструкционных материалов. В настоящее время созданы материалы, которые могут работать длительно при температуре 2200—2500°С (графит, окись магния и др.), однако они не способны противостоять механическим напряжениям.
Несмотря на достигнутые успехи, задача создания материалов для МГД-генератора пока не решена. Ведутся также поиски газа с наилучшими свойствами. Гелий с небольшой добавкой цезия при температуре 2000°С имеет одинаковую проводимость с продуктами сгорания минерального топлива при температуре 2500°С. Разработан проект МГД-генератора, работающего по замкнутому циклу, в котором гелий непрерывно циркулирует в системе.
Для работы МГД-генератора необходимо создавать сильное магнитное поле, которое можно получить пропусканием огромных токов по обмоткам. Во избежание сильного нагревания обмоток и потерь энергии в них сопротивление проводников должно быть по возможности наименьшим. Поэтому в качестве таких проводников
целесообразно использовать сверхпроводящие материалы.
МГД-генератор ы с ядерными реакторами. Перспективны МГД-генераторы с ядерными реакторами, используемыми для нагреваний газов и их термической ионизации. Предполагаемая схема такой установки показана на рис. 3.5.
Трудности создания МГД-генератора с ядерным реактором состоят в том, что современные тепловыделяющие элементы, содержащие уран и покрытые окисью
м
1 — ядерный реактор; 2 — сопло; 3 — МГД-генератор; 4 — место конденсации щелочных металлов; 5 — насос; 6 — место ввода щелочных металлов
агния, допускают температуру, не намного превышающую 600°С, в то время как для ионизации газов необходима температура, равная примерно 2000°С.Первые опытные конструкции МГД-генерато- ров имеют пока высокую стоимость. В будущем можно ожидать существенного снижения их стоимости, что позволит успешно использовать МГД-генераторы для покрытия пиков нагрузки в энергосистемах, т. е. в режимах относительно непродолжительной работы. В этих режимах КПД не имеет решающего значения и МГД-генераторы могут использоваться и без паросиловой пристройки.
В настоящее время в СССР сооружены мощные опытно-промышленные образцы МГД-преобразователей энергии, на которых ведутся исследования по совершенствованию их конструкции и созданию эффективных МГД-электростанций, конкурентоспособных с обычными электростанциями.
ТЕРМОЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ
Из всех устройств, непосредственно преобразующих тепловую энергию в электрическую, термоэлектрические генераторы (ТЭГ) относительно небольшой мощности применяются наиболее широко.
Основные достоинства ТЭГ: 1) отсутствуют движущиеся части; 2) нет необходимости в высоких давлениях;
могут использоваться любые источники теплоты;
имеется большой ресурс работы.
В качестве источников энергии ТЭГ широко используют на космических объектах, ракетах, подводных лодках, маяках и многих других установках.
В зависимости от назначения ТЭГ могут преобразовывать в электрическую энергию теплоту, получаемую в атомных реакторах, энергию солнечной радиации, энергию органического топлива и т. д. Тепловая энергия, получаемая при распаде радиоактивных изотопов и делении ядер тяжелых элементов в реакторах, стала применяться в ТЭГ с конца 50-х годов.
Принцип работы термоэлемента основан на эффекте Зеебека. В 1921 г. Зеебек сообщил об экспериментах, связанных с отклонением магнитной стрелки вблизи термоэлектрических цепей. В этих исследованиях Зеебек не рассматривал задачу получения энергии. Сущность открытого эффекта состоит в том, что в замкнутой цепи, состоящей из разнородных материалов, протекает ток при разных температурах контактов материалов.
Эффект Зеебека можно качественно объяснить тем, что средняя энергия свободных электронов различна в разных проводниках и по-разному увеличивается с повышением температуры. Если вдоль проводника существует перепад температур, то возникает направленный поток электронов от горячего спая к холодному, вследствие чего у холодного спая образуется избыток отрицательных зарядов, у горячего— избыток положительных. Поток этот более интенсивен в проводниках с большой концентрацией электронов. В простейшем термоэлементе, замкнутая цепь которого состоит из двух проводников с разными концентрациями электронов и спаи поддерживаются при разных температурах, возникает электрический ток. Если цепь термоэлемента разомкнута, то накопление электронов на холодном конце увеличивает его отрицательный потенциал до тех пор, пока не установится динамическое равновесие между электронами, смещающимися к холодному концу, и электронами, уходящими от холодного конца под действием возникшей разности потенциалов. Чем меньше электропроводность материала, тем меньше скорость обратного перетока электронов, следовательно, тем выше ЭДС. Поэтому полупроводниковые элементы более эффективны, чем металлы.
Одно из практических применений ТЭГов — тепловой насос в одной части выделяющий, а в другой — поглощающий теплоту за счет электрической энергии. Если изменить направление тока, то насос будет работать в противоположном режиме, т. е. части, в которых происходит выделение и поглощение теплоты, поменяются местами. Такие тепловые насосы могут успешно применяться для терморегуляции жилых и прочих помещений. Зимой насосы нагревают воздух в помещении и охлаждают его на улице (рис. 3.6,а), а летом, наоборот,
Р
а
— тепловой насос, обогревающий
комнату зимой; 5
— тепловой насос, охлаждающий комнату
летом; в
— общий вид и конструктивное выполнение
теплового насоса
охлаждают воздух в помещении и нагревают на улице (рис. 3.6,6). На рис. 3.6,6 показаны общий вид и схема установки теплового насоса в помещении.
Тепловые
насосы могут подогревать воду на фермах,
используя теплоту молока. Так, парное
молоко коровы, имеющее температуру
37—38°С и содержащее Q
i ккал,
должно быть охлаждено перед отправкой
на молокозавод до 4°С. Если охлаждать
его с помощью теплового насоса, то
выходящая из насоса охлаждающая вода
будет иметь температуру 50—60°С.
Повышение температуры воды обусловлено
введением от внешнего источника
дополнительной
энергии,
соответствующей дополнительной теплоте
Q0.
При
этом теплота нагреваемой воды Q2==Qi
+ Qo- Эта
вода хорошо используется в
производственном процессе фермы, в
результате чего установка окупается в
два-три года.
В настоящее время созданы полупроводники, работающие при температуре более 500°С. Однако для промышленного ТЭГ потребуется температуру горячего спая довести примерно до 1100°С. При таком повышении температуры полупроводники различных типов проявляют тенденцию к превращению в собственно полупроводники, у которых числа носителей положительных и отрицательных зарядов равны. Эти заряды при создании градиента температуры перемещаются от горячего спая к холодному в равном количестве и, следовательно, накапливание потенциала не происходит, т. е. не создается термо-ЭДС. Собственно полупроводники бесполезны для целей генерирования термоэлектрического тока.
В настоящее время широко ведутся исследования по созданию полупроводников, работающих при высоких температурах. Для работы ТЭГа можно использовать теплоту, получаемую в реакторах при делении ядер тяжелых элементов. Однако в этом случае требуется решить ряд задач, в частности определить влияние эффекта сильного радиационного воздействия на полупроводниковые материалы, так как ядерное горючее может находиться в непосредственном контакте с полупроводниковыми материалами.
Вопрос о целесообразности применения тех или иных источников энергии решается в пользу ТЭГ в тех случаях, когда ведущее значение имеет не КПД, а компактность, надежность, портативность, удобства.
В СССР создан надежный промышленный ТЭГ на ядерном горючем — «Ромашка». Электрическая мощность его равна 500 Вт.
РАДИОИЗОТОПНЫЕ ИСТОЧНИКИ ЭНЕРГИИ
Естественный радиоактивный распад ядер сопровождается выделением кинетической энергии частиц и у-квантов. Эта энергия поглощается средой, окружающей радиоактивный изотоп, и превращается в теплоту, которую можно использовать для получения электрической энергии термоэлектрическим способом. Установки, преобразующие энергию естественного радиоактивного распада в электрическую энергию с помощью термоэлементов, называются радиоизотопными термогенераторами. Радиоизотопные термогенераторы надежны в работе, обладают большим сроком службы, компактны и успешно используются в качестве автономных источников энергии для различных установок космического и наземного назначений.
Современные радиоизотопные генераторы имеют КПД, равный 3—5%, и срок службы от 3 месяцев до 10 лет. Технико-экономические характеристики этих генераторов в будущем могут быть значительно улучшены. В настоящее время создаются проекты генераторов мощностью до 10 кВт.
К радиоизотопным термогенераторам проявляют интерес различные отрасли науки и техники. Их предполагается использовать в виде источника энергии искусственного сердца человека, а также для стимулирования работы различных органов в живых организмах. Особенно пригодными оказались радиоизотопные термогенераторы при освоении космического пространства, где необходимы источники энергии, способные длительно и надежно работать в неблагоприятных условиях воздействия ионизирующих излучений, в радиационных поясах, на поверхности других планет и их спутников.
ТЕРМОЭМИССИОННЫЕ ГЕНЕРАТОРЫ
Явление термоэлектронной эмиссии было открыто Т. Эдисоном в 1883 г. Работая над созданием электрической лампы, Эдисон помещал в колбе две нити. Когда перегорала одна из них, он поворачивал лампу и включал другую. Во время испытания ламп обнаруживалось, что некоторое количество электричества переходит к холодной нити, т. е. электроны «испаряются» с горячей нити — катода — и движутся к холодной нити — аноду — и далее во внешнюю электрическую цепь. При этом часть тепловой энергии, расходуемой на нагревание катода, переносится электронами и отдается аноду, а часть энергии электронов выделяется во внешней электрической цепи при протекании электрического тока.
Анод разогревается за счет теплоты, приносимой электронами. Если бы температуры катода и анода были одинаковыми, то теплота «испарения» электронов с катода в точности была бы равна теплоте «конденсации» электронов на аноде и не было бы преобразования теплоты в электрическую энергию. Чем меньше температу
ра анода по сравнению с температурой катода, тем большая часть тепловой энергии превращается в электрическую. Простейшая схема термоэмиссионного преобразователя энергии показана на рис. 3.7.
В
1 — катод; 2 — анод
обычной диодной радиолампе мощность, расходуемая на нагревание катода, примерно равна 10 Вт, а выходная мощность, снимаемая с анода,— 1 мВт. Таким образом, на нагревание расходуется мощность, в 107 раз большая. КПД преобразователя составляет ничтожно малую величину — 0,Ы0-4%. Если бы КПД был даже в миллион раз больше, то это устройство все равно нельзя было бы рассматривать как преобразователь энергии для промышленных целей. Однако прогресс в развитии термоэмиссионных преобразователей оказался настолько значительным, что удалось КПД современных диодных преобразователей энергии довести до 20%.В процессе термоэлектронной эмиссии с поверхности металлов происходит выход свободных электронов. В металлах содержится большое число свободных элект-
© |
© © |
© |
© |
© © © © |
© |
© |
© |
|
© |
© © © |
|
© |
|
|
© |
© |
© |
г© |
© |
© |
© |
© |
© |
© |
© |
© |
© |
1
© |
© |
© |
© |
© |
© |
© |
© |
© |
© |
© |
© |
© |
© |
© |
© |
Рис.
3.8. Возникновение результирующих сил,
действующих на электрон в металле и
вблизи его поверхности
тронов — около 6-1021 в 1 см3. Внутри металла силы притяжения электрона сбалансированы положительно заряженными ядрами (рис. 3.8). Непосредственно у поверхности на электроны действуют результирующие силы притяжения, для преодоления которых и выхода за пределы металла электрону нужно обладать достаточной
кинетической энергией. Увеличение кинетической энергии происходит при нагревании металла.
В
/ — защита; 2 — охладитель; 3 — анод; 4 — вакуум; 5 — катод; 6 — ядерное горючее
энергетических термоэмиссионных генераторах для нагревания катода можно воспользоваться теплотой, получаемой в результате ядерной реакции. Схема ядерного термоэмиссионного преобразователя приведена на
Рис.
ЗЛО. Схема установки прямого преобразования
ядерной энергии в электрическую:
/
— ^-радиоактивный излучатель; 2
— металлическая ампула; 3
— металлический
сосуд
рис. 3.9. КПД первых таких преобразователей был равен примерно 15%; по существующим прогнозам его можно довести до 40 %.
Испускание электронов в термоэмиссионных генераторах вызывается нагреванием катода. При радиоактивном распаде электроны (р-лучи) испускаются вследствие естественного свойства элементов. Непосредственно используя это свойство, можно осуществить прямое преобразование ядерной энергии в электрическую (рис. 3.10).
ЭЛЕКТРОХИМИЧЕСКИЕ ГЕНЕРАТОРЫ
В электрохимических генераторах происходит прямое преобразование химической энергии в электрическую. Возникновение ЭДС в гальваническом элементе связано со способностью металлов посылать свои ионы в раствор в результате молекулярного взаимодействия между ионами металла и молекулами (и ионами) раствора.
Рассмотрим явления, происходящие при опускании цинкового электрода в раствор сернокислого цинка (ZnSCU). Молекулы воды стремятся окружить положи
тельные ионы цинка в металле (рис. 3.11). В результате действия электростатических сил положительные ионы цинка переходят в раствор сернокислого цинка. Этому переходу способствует большой дипольный момент воды.
Н
По мере перехода положительных ионов в раствор увеличивается отрицательный потенциал электрода, препятствующий этому переходу. При некотором потенциале металла наступает динамическое равновесие, т. е. два встречных потока ионов (от электрода в раствор и обратно) будут одинаковы. Этот равновесный потенциал называется электрохимическим потенциалом металла относительно данного электролита.
Важное техническое приложение гальванические элементы нашли в аккумуляторах, где вещество, расходующееся при отборе тока, предварительно накапливается на электродах при пропускании через них в течение некоторого времени тока от постороннего источника (при зарядке). Применение аккумуляторов в энергетике затруднено вследствие малого запаса активного химического горючего, не позволяющего получать непрерывно электроэнергию в больших количествах. Кроме того, для аккумуляторов характерна малая удельная мощность.
Большое внимание во многих странах мира уделяется непосредственному преобразованию химической энергии органического топлива в электрическую, осуществляемому в топливных элементах. В этих преобразователях энергии можно получить более высокие значения КПД, чем у тепловых машин. В 1893 г. немецкий физик и химик Нернст вычислил, что теоретический КПД электрохимического процесса превращения химической энергии угля в электрическую равен 99,75%.
На рис. 3.12 показана принципиальная схема водородно-кислородного топливного элемента. Электроды в топливном элементе выполнены пористыми. На аноде
происходит переход положительных ионов водорода в электролит. Оставшиеся электроны создают отрицательный потенциал и во внешней цепи перемещаются к катоду. Атомы кислорода, находящиеся на катоде, присоединяют к себе электроны, образуя отрицательные ионы,
к
Рис. 3.12. Схема водороднокислородного топливного элемента:
/ — корпус; 2 — катод; 3 — электролит; 4 —- анод
оторые, присоединяя из воды атомы водорода, переходят в раствор в виде ионов гидроксила ОН"". Ионы гидроксила, соединяясь с ионами водорода, образуют воду. Таким образом, при подводе водорода и кислорода происходит реакция окисления горючего ионами с одновременным образованием тока во внешней цепи. Так как напряжение на выводах элемента невелико (порядка 1 В), то элементы последовательно соединяют в батареи. КПД топливных элементов очень высок. Теоретически он близок к единице, а практически он равен 60— 80%.Использование водорода в качестве топлива сопряжено с высокой стоимостью эксплуатации топливных элементов, поэтому изыскиваются возможности применения других более дешевых видов топлива, в первую очередь природного и генераторного газа. Однако удовлетворительные скорости протекания реакции окисления газа происходят при высоких температурах 800—1200 К, что исключает применение в качестве электролитов водяных растворов щелочи. В этом случае можно использовать твердые электролиты с ионной проводимостью.
В настоящее время широко ведутся работы над созданием эффективных высокотемпературных топливных элементов. Пока удельная мощность топливных элементов все еще невелика. Она в несколько раз ниже, чем у двигателей внутреннего сгорания. Однако успехи элект- трохимии и конструктивные усовершенствования топливных элементов в недалеком будущем сделают возможным применение топливных элементов в автотранспорте и энергетике. Топливные элементы бесшумны, экономичны и у них отсутствуют вредные отходы, загрязняющие атмосферу.
Геотермальные электростанции в качестве источника энергии используют теплоту земных недр. Известно, что в среднем на каждые 30—40 м в глубь Земли температура возрастает на 1°С. Следовательно, на глубине 3— 4 км вода закипает, а на глубине 10—15 км температура Земли достигает 1000—1200°С. В некоторых частях планеты температура горячих источников достаточно высокая и в непосредственной близости от поверхности. Эти районы наиболее благоприятны для сооружения геотермальных станций. Так, в Новой Зеландии на геотермальных станциях вырабатывается 40% всей электроэнергии, в Италии — 6%. Значительная доля электроэнергии приходится на такие станции и в ряде других стран.
В
1 — скважина; 2 — паропреобразо- ватель; 3 — турбина; 4 — конденсатор; 5 — насос; 6 — водяной теплообменник
СССР для ряда районов, например Камчатки и Курильских островов, сооружение геотермальных станций может оказаться экономически оправданным. Так, на Камчатке успешно эксплуатируется опытно-промышленная геотермальная станция. Обсуждаются также возможности использования действущих вулканов на Курильских островах.Структурная схема геотермальной электростанции для вулканических районов приведена на рис. 3.13. Схема электростанции для вулканических районов, располагающих ресурсами термальных вод с температурой 100°С на глубинах, доступных для современной буровой техники, приведена на рис. 3.14.
В более отдаленном будущем предполагается использование высокотемпературных слоев мантии (до 1000°С) для получения пара, в который будет превращаться вода, закачиваемая в искусственно созданные «вулканические» жерла. Разумеется, что получаемая таким образом энергия будет «чистой» и не будет влиять на биосферу (огромная масса мантии практически исключает влияние на ее состояние отбираемой теплоты).
Использование геотермальной энергии в современных условиях в значительной степени зависит от затрат, необходимых для вывода на поверхность геотермального теплоносителя в виде пара или горячей воды. Все действующие в настоящее время геотермальные электростанции располагаются в таких районах Земли, в которых
Рис.
3.14. Схема геотермальной электростанции
для невулканических районов:
/
— скважина; 2
—
бак-аккумулятор; 3
—
расширитель;
4
—
турбина; 3
— генератор; б
—
градирня; 7 — насос,
8
— смешивающий конденсатор; 9,
10 —
насос
температура теплоносителя достигает 150—360°С на глубинах, не превышающих 2—5 км.
В последнее время более интенсивно проводятся поиски участков Земли с минимальной глубиной расположения геотермальных ресурсов. На таких участках рентабельно создание систем, осуществляющих теплоснабжение и получение электрической энергии.
Практически все геотермальные источники содержат примеси в виде различных химических элементов. Химическая активность подземных теплоносителей, в составе которых могут быть ртуть, мышьяк, вызывает отрицательные экологические эффекты, а также усиливает коррозию конструкционных материалов энергетического оборудования. Извлечение химических элементов до отбора теплоты от теплоносителя позволяет снизить экологическое влияние, уменьшить химическую коррозию и получить ценное сырье для химической промышленности. Так, в некоторых скважинах Южно-Каспий- ского бассейна в 1 л воды содержится, мг: свинца — 77, цинка — 5, кадмия — 2, меди — 15,
В настоящее время геотермальные источники больше используются для теплоснабжения, чем для выработки электрической энергии. Это объясняется как техническими трудностями в работе геотермальных электростанций, так и высокой стоимостью их в расчете на единицу установленной мощности.
ИСПОЛЬЗОВАНИЕ МОРСКИХ ВОЗОБНОВЛЯЕМЫХ
РЕСУРСОВ
Ресурсы морей и океанов можно разбить на три группы:
вертикальные термоградиенты и океанические ветры;
морская биомасса и геотермальные воды;
поверхностные волны, течения и перепады солености.
Предполагают, что использование ресурсов первой группы может начаться в конце 80-х годов, второй — в 90-х, а третьей не ранее 2000-го года.
Мощности и стоимости различных потенциальных источников энергии приведены в табл. 3.21.
Таблица 3.2
Источники энергии |
Мощность, млн. кВт |
Стоимость производства электроэнергии, цент/(кВт'Ч) |
Вертикальные термоградиенты |
10 000 |
4—7 |
Поверхностные волны |
500 |
11—24 |
Морские течения |
60 |
13—32 |
Океанские ветры |
170 |
5—9 |
Перепады солености |
3 500 |
14-29 |
Топливная биомасса |
770 |
11—15 |
Геотермальные воды |
3 000 |
25—30 |
Приведенные показатели свидетельствуют о большой стоимости «энергии будущего». В самом деле, если считать, что электроэнергия, полученная на основе нефти, угля или урана, стоит в среднем 3—6 центов за 1 кВт-ч, то энергия вертикальных термоградиентов и океанских ветров будет в 1,5—2 раза дороже. Остальные виды энергии будут дороже в 4—6 раз.
Жидкий аммиак
-р Теплая -\~ борская бода — гэ 'с
т~
Газводразный Л аммиак
О
Пасов
J......... ,j I Халоднря
морская Soda 4 'О
Жидкий аммиак
Из указанных возможных энергий океана пока наиболее ясно использование вертикальных термоградиентов. На рис. 3.15 показана работа так называемой «закрытой» системы. Насос обеспечивает циркуляцию аммиака, имеющего очень низкую температуру кипения, в замкнутом контуре. Теплая океаническая вода нагревает аммиак (верхняя часть схемы), который переходит
в газообразное состояние и в этом виде поступает на турбину, где он расширяется и приводит в действие генератор. С турбины аммиак выходит с пониженной температурой и при меньшем давлении и пропускается через теплообменник, использующий холодную воду; газ сжижается, и цикл повторяется. В «открытой» системе в качестве рабочего тела используется морская вода; ее температура кипения снижается в вакуумной камере, где поддерживается
Рис. 3.15. Технологическая давление на уровне 3,5 /о
схема работы океанической от нормального атмосфер-
электростандии: НОГО.
/-электрический генератор; 2- Рассматривая ВОЗМОЖ-
турбина; 3 — теплообменник, 4 — г
насос; 5 — конденсатор НЫе СПОСОбЫ Преобразования
энергии, необходимо учитывать, что в соответствии с законами физики все энергетические процессы сводятся к трансформации одного вида энергии в другой. Здесь важно то обстоятельство, что плотности потоков энергии ограничиваются физическими свойствами среды. Это, в свою очередь, практически исключает применение в энергетике больших мощностей многих казалось бы эффективных процессов трансформации энергии. Например, в топливных элементах химическая энергия окисления водорода непосредственно превращается в электрическую. Такой способ получения электрической энергии, несмотря на очень высокий КПД, равный примерно 70%, на сегодня приходится признать непригодным для промышленности из-за малой скорости диффузионных процессов в электролите и, следовательно, малой плотности энергии. Так,
,
с 1 м! электрода можно получить не более 200 Вт мощности. А это означает, что при генерировании 100 МВт мощности рабочая площадь электродов должна быть примерно 1 км2, что, конечно, практически нереализуемо.
Из-за малой плотности потока энергии неперспективным представляется применение в энергетике и прямого преобразования химической энергии в механическую. Такое преобразование происходит с высоким КПД в мускулах животных. Механизм его достаточно глубоко пока не изучен. Но даже если предположить, что такое преобразование энергии будет воспроизведено искусственно, то оно, видимо, не сможет найти применение в энергетике из-за малой плотности потока энергии, которая не может быть больше, чем у топливных элементов.
СОЛНЕЧНЫЕ ЭЛЕКТРОСТАНЦИИ
Солнце — источник жизни на нашей планете и основной источник всех видов получаемой на ней энергии. В настоящее время большое внимание уделяется прямому использованию солнечной энергии. Заманчиво создание солнечных элементов для превращения энергии солнечной радиации в электрическую. В солнечных элементах используется явление фотоэффекта, т. е. вырывание электронов из тела под действием света.
Фотоэффект открыт Герцем в 1887 г. и детально исследован А. Г. Столетовым в 1888 г. Несмотря на то что фотоэффект известен давно, природа его пока полностью не изучена. Практическое использование фотоэффекта для получения электроэнергии стало возможным в последнее время в связи с применением полупроводников.
При соприкосновении полупроводников, имеющих электронную (n-типа) и дырочную (p-типа) проводимости, на границе образуется контактная разность потенциалов вследствие диффузии электронов. Если полупроводник с дырочной проводимостью освещается, то его электроны, поглощая кванты света, переходят на полупроводник с электронной проводимостью. В замкнутой цепи при этом образуется электрический ток.
В настоящее время наиболее совершенны кремниевые фотоэлементы, на которые действуют как направленные,
! так и рассеянные солнечные лучи. Кремниевые фотоэлементы могут одинаково успешно работать зимой и летом. Зимой снижение светового потока компенсируется увели-
чением КПД за счет понижения температуры. КПД кремниевых фотоэлементов достигает примерно 15%.
Из-за сложной технологии изготовления полупроводников и их большой стоимости кремниевые фотоэлементы применяются пока на уникальных установках, например на спутниках Земли. В будущем можно ожидать более широкое применение фотоэлектрических генераторов, преобразующих большие потоки энергии солнечной радиации.
Солнечная энергия может быть использована также в фотоэлектрических процессах, протекающих подобно естественному фотосинтезу органических вещестр. Практическое освоение таких процессов позволило бы получать необходимую человечеству энергию и решить актуальную проблему истощения запасов органического топлива.
Огромное количество солнечной энергии, приходящей на Землю (примерно 0,15 МВт-ч на 1 м2 поверхности в год), в современных условиях затруднительно использовать из-за низкой плотности солнечной радиации и ее
Рис.
3.16. Проект солнечной энергетической
станции на искусственном спутнике:
а
—
принципиальная схема: 1
—
поток солнечной энергии; 2
— спутник-коллектор солнечной энергии;
3
— передающая антенна; 4—
приемная антенна; 5 —- УКВ-луч; 6
— синхронная орбита энергетического
спутника <30— 40 тыс. км от поверхности
Земли); б
— общий вид
зависимости от состояния атмосферы (облачности) и времени года. Возможно создание солнечных станций на искусственных спутниках Земли. В этом случае солнечная энергия будет аккумулироваться в течение 24 ч, а следовательно, эффективность работы станции не будет зависеть от облачного покрова. Передача энергии на Землю должна осуществляться по каналу УКВ. Принципиальная схема солнечной станции на искусственном спутнике и ее общий вид представлены на рис. 3.16, а, б. Размеры спутника-коллектора солнечной энергии (рис. 3,16, а) могут быть различны (от 20 до 100 км2) в зависимости от мощности станции.
Энергия от солнечных элементов космической станции должна передаваться на Землю с помощью антенны в виде достаточно узкого пучка УКВ-волн (длина волны « 10 см). Приемная антенна на Земле будет принимать этот пучок энергии, который затем должен будет преобразовываться в энергию промышленной частоты.
Ожидается, что весь процесс будет характеризоваться достаточно высоким КПД. В настоящее время КПД преобразования энергии солнечными элементами на монокристаллах составляет 11%- Предполагается, что путем усовершенствования кремниевых элементов может быть достигнут КПД, равный 20%.
Расчетные значения КПД преобразования энергии на космических станциях приведены в табл. 3 3.
Таблица
3.3
Производство
и передача электроэнергии солнечной
электростанцией
КПД
достигнутые
в настоящее время
ожидаемые
при существующей технологии
ожидаемые
за счет дальнейших разработок
Генерация
УКВ-потока
76,7*
85,0
90,0
энергии
Передача
энергии с вы
94,0
94,0
95,0
хода
генератора до створа
антенны
Улавливание
и детекти
64,0
75,0
90,0
рование
Общий
КПД
26,5**
60,0
77,0
*
Такое значение продемонстрировано на
частоте 3000 МГц при непрерывной
генерадии
с
уровнем мощности 300 кВт.
**
На частоте 2450 МГц (длина волны 12,2 см).
Космические солнечные станции могут быть спроектированы на полезную электрическую мощность 3—20 ГВт и более. Размер солнечной батареи станции с полезной выходной мощностью 5 ГВт можно оценить исходя из КПД, равного 15%. Соответствующая такой станции суммарная поверхность солнечной батареи равна 20 км2. При этом передающая антенна должна иметь диаметр 1 км, приемная антенна — диаметр 7—10 км. Плотность пучка УКВ-волн со станции на Землю в этом случае составит всего 'Д нормальной плотности солнечной энергии, поэтому он не должен представлять опасности ни для летательных средств, ни для птиц. Вопрос, связанный с радиопомехами, не должен стать серьезной проблемой. Технические проблемы состоят только в улучшении достигнутой технологии и совсем не требуют разработки принципиально новых решений.
Большое внимание уделяется перспективе использования солнечной энергии в промежуточном процессе получения топлива. Так, энергия крупных солнечных станций может быть использована для синтеза топлива на основе углеводорода, например метанола из известняка и воды.
Наличие благоприятных условий во многих странах позволяет использовать для практических целей солнечную энергию. В направлении применения солнечной энергии уже выполнен ряд работ и доказана возможность ее использования для опреснения и дистилляции воды, приготовления пищи, нагревания воды, привода насосов и других целей. В целом несомненно, что человечество в будущем обратится к Солнцу — главному источнику энергии, которую и будет применять различными путями.
Один из путей использования энергии Солнца заключается в реализации проектов улавливания и накопления энергии фотосинтеза. Трудность реализации таких проектов заключается в низкой эффективности фотосинтеза как способа превращения солнечной энергии в химическую.
Считается, что благодаря фотосинтезу ежегодно образуется около 155 млрд. т сухой органической массы, главным образом целлюлозы, которую можно использовать как топливо. Однако из-за низкого КПД энергетического преобразования пришлось бы значительно увеличить посевные площади для получения энергии в необходимых количествах. Поэтому проводятся интенсивные исследования, направленные на увеличение КПД преобразования. При этом пытаются получить дешевую полезную массу растений, по возможности создавая оптимальный искусственный газовый состав и т. п. Так, по данным, полученным в США, если выращивать кукурузу как энергетическое топливо, то его стоимость будет сравнима с нынешней стоимостью ископаемого топлива; если использовать для этой цели хвойный лес, в котором бы на акр (1 акр—0,4 га) приходилось около 6 тыс. деревьев, и собирать урожай один раз в 12 лет, то вследствие замедленного роста деревьев и некоторых других факторов стоимость производимой из них энергии возрастет примерно вдвое по сравнению с энергией, получаемой от кукурузы. Многолетние растения имеют, однако, преимущество перед однолетними: урожай с них можно собирать в течение всего года в соответствии с потребностями, и при этом не возникает проблем, связанных с созданием огромных хранилищ «энергетических урожаев», которые заготавливают только в определенный сезон. Поэтому для производства энергии обратились к быстро растущим лиственным деревьям, у которых после порубки корни дают побеги, что позволяет избежать ежегодных посадок.
На экспериментальных участках заброшенных пахотных земель в Центральной Пенсильвании выращиваются гибридные тополя. Один из гибридов, высаженный в количестве примерно 3700 деревьев на акр, «производит» энергию, которая оказывается заметно дешевле нефти и несколько дешевле угля. Такая плантация может давать около 681 млн. Вт/(м2-К) (120 млн. Btu) с акра в год при КПД энергетического преобразования 0,6%- Для обеспечения топливом средней электростанции мощностью 400 МВт потребуется плантация площадью 30 тыс. акров. Для снабжения топливом, получаемым на «энергетических плантациях», большей части электростанций в США требуется примерно 160—200 млн. акров даже при коэффициенте преобразования солнечной энергии в топливо, не превышающем 0,4%.
ЗЛО.
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ РЕАКТОРОВ-
РАЗМНОЖИТЕЛЕЙ
И ТЕРМОЯДЕРНЫХ РЕАКЦИЙ
В настоящее время в качестве основного источника энергии человечество использует органическое топливо, запасы которого быстро уменьшаются. Поэтому актуаль-
на проблема замены топлива другим, имеющим хорошие показатели получения и преобразования источником энергии. В обозримом будущем наиболее перспективно использование ядерной энергии.
Реакторы-размножители на быстрых нейтронах позволяют человеку полностью использовать энергию, запасенную природой в тяжелых ядрах урана и тория.
Первым «прототипом» энергетической станции будущего с реакторами на «быстрых» нейтронах стала вступившая в строй в 1973 г. станция в г. Шевченко с реактором мощностью, равной 350 МВт (БН-350). Этот реактор вырабатывает пар для турбин и установок опреснения воды. В г. Белоярске вступил в строй реактор БН-660, строится промышленная электростанция с реактором БН-1500.
В целях безопасности реактор и компоненты первичных контуров размещаются в ряде защитных железобетонных камер.
Роль реакторов-размножителей в решении проблемы выработки человечеством больших количеств энергии велика. Однако несомненно, что еще большее значение будет иметь овладение энергией термоядерных реакций, в которых осуществляется синтез легких элементов. При этом будет получен практически неисчерпаемый источник энергии. В морях нашей планеты содержатся легкие, поддающиеся синтезу элементы, которые могут обеспечить человечество энергией на многие миллионы лет.
Проблема состоит в осуществлении управляемой реакции синтеза. Ядерный синтез был известен за несколько лет до открытия способности деления ядер. В 1931 г. Гарольд Юра впервые выделил дейтерий из воды и с помощью небольших ускорителей показал, что реакция синтеза двух ядер дейтерия сопровождается выделением энергии. Реакция синтеза происходит при сообщении ядрам большой скорости, при которой кинетическая энергия достаточна для преодоления энергии электростатического отталкивания положительно заряженных ядер.
В естественных условиях в звездах и на Солнце протекают термоядерные реакции при высоких температурах. На Земле высокая температура, необходимая для осуществления реакции синтеза легких элементов, может быть получена, например, при взрыве атомной бомбы. Практически мгновенная реакция синтеза происходит в водородных бомбах. Задача состоит в получении непрерывной реакции синтеза, что возможно при следующих условиях:
топливо должно быть чистым и состоять из легких ядер (в качестве потенциального топлива рассматривают дейтерий и тритий — изотопы водорода с относительной атомной массой 2 и 3 соответственно);
плотность топлива должна быть не менее 1015ядер в 1 см3;
температура должна быть не менее 100 млн. °С и не более 1 млрд. °С;
максимальная температура топлива при необходимой его плотности должна удерживаться на протяжении десятых долей секунды.
Одно из основных препятствий получения управляемого термоядерного синтеза (УТС) состоит в удержании плазмы, которой свойственна чрезвычайная нестабильность. В естественных условиях на Солнце плазма находится в сильном гравитационном поле. На Земле плазму можно удержать в специальном сильном магнитном поле.
Получение энергии за счет синтеза ядер обладает рядом существенных преимуществ:
используется дешевое топливо с практически неисчерпаемыми запасами;
исключаются аварии ядерных установок наподобие аварий при возникновении неуправляемой реакции деления ядер;
получаются нетоксичные и нерадиоактивные конечные продукты термоядерного синтеза;
непосредственно преобразуется энергия заряженных частиц, из которых состоит высокотемпературная плазма, в электрическую энергию в МГД-генераторах. При этом могут быть получены высокие значения КПД (до 90%). что позволит резко сократить тепловое загрязнение окружающей среды.
Конструирование и эксплуатация термоядерных электростанций потребует соблюдения мер предосторожности, так как тритий радиоактивен, а по всей вероятности именно этот элемент будет использоваться в качестве топлива. Тритий не обладает сильно проникающей радиацией и поэтому в основном следует опасаться попадания его внутрь организма. Необходимо будет предусмотреть также защиту от потоков нейтронов, которым сопровождается реакция синтеза. Нейтроны, вступая во взаимодействие с материалами окружающей среды, приводят к возникновению «наведенной» радиоактивности.
Реакция синтеза изотопов водорода (дейтерия и трития) протекает по схеме, представленной на рис. 3.17.
В
реактора. Используя Тритий
е
стественную
смесь изотопов литий-6 и литий-7, в
реакторе можно получить коэффи-
циент воспроизводства трития, равный 1,2—
1,5, т. е. реактор производит горючее. Иными
словами,
в реакторе Рис.
3.17. Реакция синтеза изотопов
фактически
сжигается водорода
— дейтерия и трития
литий, 1 г которого в
этих условиях эквивалентен примерно массе условного топлива в 1 т. При таком соотношении эквивалентные запасы лития примерно на три порядка превосходят запасы всех видов традиционного ископаемого топлива, причем добыть литий относительно несложно.
На X Европейской конференции по физике плазмы и управляемому термоядерному синтезу, происходившей в Москве, было признано перспективным получение УТС в «токамаках», предложенное советскими физиками.
Слово «токамак» введено советскими учеными Л. А. Арцимовичем, И. Н. Головиным и Н. А. Явлинским, которые, начав в 50-х годах исследования по управляемым термоядерным реакциям, избрали для этой цели вакуумную камеру в форме бублика, внутри которой с помощью мощного газового разряда создавали высокотемпературную плазму.
Для стабилизации плазмы использовалось сильное продольное магнитное поле. От первых слогов названий основных компонентов установки — Тороидальная КА- мера с МАгнитными Катушками — и было образовано слово «токамак».
Идея магнитной термоизоляции плазмы очень проста. Известно, что заряженная частица (а плазма состоит из заряженных частиц — электронов и ионов) не может
двигаться поперек магнитной силовой линии. Если создать систему замкнутых магнитных силовых линий, то, в принципе, можно удерживать плазму в некотором ограниченном объеме.
Конкретных вариантов реализации этой идеи существует немало, но наиболее развит на сегодня вариант токамака.
Внешне токамак похож на большой трансформатор с железным замкнутым сердечником и первичной обмоткой, по которой пропускают переменный электрический ток — в простейшем случае ток разряда конденсаторной батареи. В качестве вторичной обмотки служит единственный замкнутый виток вакуумной камеры — плазменный шнур.
При разряде батареи в камере появляется вихревое электрическое поле, образование которого приводит к пробою газа, его ионизации и нагреванию до высоких температур. Это напоминает действие лампы дневного света, но в более крупных масштабах. Например, в установке «Токамак-10», созданной в Институте атомной энергии им. И. В. Курчатова, ток в плазме достигает 600 000 А, а сама плазма имеет объем около 4 м3. Под действием тока плазма нагревается до очень высокой температуры — в больших установках до нескольких десятков миллионов градусов. В принципе, если отбросить некоторые чисто физические детали (в них-то и состоит суть проблемы), идея удержания плазмы в токамаке, очень проста. Однако реальные физические процессы не всегда совпадают с идеализированными представлениями
о них. При температурах в десятки миллионов градусов и сравнительно низкой плотности плазмы (около 1014 частиц/см3) образующие ее частицы — ионы или электроны — редко сталкиваются между собой, двигаясь в магнитном поле.
Поведение плазмы зависит в первую очередь, от качества магнитного поля токамака, его способности выполнять роль магнитной ловушки.
Магнитное поле токамака складывается из поля тока, протекающего по плазме, и поля катушек. Поле тока имеет силовые линии в виде колец, расположенных вокруг плазменного витка. Линии поля катушек также имеют вид замкнутых колец, но расположенных не вокруг плазменного витка, а вдоль него. Таким образом, силовые линии суммарного поля образуют спирали, которые навиваются на вложенные одна в другую тороидальные поверхности, называемые магнитными. В сильном магнитном поле заряженные частицы движутся в основном вдоль силовых линий по спиральным траекториям.
При столкновениях частицы могут переходить с одной спиральной траектории на другую на расстояние, равное ширине спирали. Столкновения частиц не должны приводить к существенным поперечным перемещениям их по направлению к стенке камеры. Поперечные потоки частиц учтены в теории, развитой советскими фи- зиками-теоретиками А. А. Галеевым и Р. 3. Сагдеевым и получившей название «неоклассической». Ее новизна, отраженная в приставке «нео», состоит в учете реальных траекторий частиц в искривленном поле токамака, а слово «классическая» имеет в физике плазмы смысл учета только парных столкновений, а не более сложных коллективных взаимодействий.
Как показал эксперимент, ионы плазмы ведут себя в полном соответствии с этой теорией. Их столкновения между собой приводят к тому, что более горячие, т. е. высокоэнергичные, ионы выходят из центральных областей к периферии, осуществляя тем самым перенос теплоты к стенкам.
Поведение электронов, как показали эксперименты, не подчиняется неоклассической теории. Согласно ей электронный перенос теплоты должен быть в десятки раз меньше ионного из-за того, что ширина электронных траекторий — спиралей гораздо меньше ионных. На практике же электронный перенос оказался больше ионного.
Это расхождение теории с экспериментом наводило на мысль, что электроны помимо столкновения могут найти другие пути для выхода из внутренних областей ловушки к периферии. Возник вопрос: не преувеличена ли теорией надежность магнитной конфигурации, т. е. действительно ли магнитные силовые линии так хорошо «упакованы», что лежат на магнитных поверхностях, не соприкасающихся между собой.
Дальнейшие исследования показали, что в камере токамака могут создаваться такие условия, при которых конфигурация магнитных полей во внутренней области быстро перестраивается. Магнитные поверхности как бы выворачиваются наизнанку: в центр попадает более холодная плазма, а на периферию — более горячая. Магнитные поверхности в этой области на время разрушаются — в них происходит «обмен» силовыми линиями, или, иначе, «перезамыкание» силовых линий.
Интересно отметить, что именно такой же процесс пе- резамыкания силовых линий в хвосте магнитосферы Земли приводит к полярным сияниям, а на Солнце процессы перезамыкания порождают хромосомные вспышки — источник космического излучения, опасного для космонавтов. Физическая природа этих явлений оказывается почти одной и той же.
Иногда в плазме токамака развивается явление, называемое неустойчивостью, которая приводит к выбросу плазмы на стенки вакуумной камеры. Неустойчивость, по всей вероятности, также связана с процессами перезамыкания, захватывающими в этом случае практически весь плазменный шнур. Существуют различные способы предотвращения неустойчивости. Один из способов — снижение до минимума загрязнения дейтериевой плазмы посторонними примесями. Другой — стабилизация неустойчивости-использование обратных связей, которые гасят возмущение магнитных поверхностей раньше, чем оно успевает развиться до крупномасштабной неустойчивости.
Научившись бороться с неустойчивостью плазмы, советские физики провели на токамаках исследования, результаты которых оказались столь впечатляющими, что в начале 70-х годов токамаки стали создаваться в других странах, ведущих работы по УТС. Результаты исследований по освоению УТС на токамаках основаны уже не на единичных экспериментах на отдельных установках, а на большом семействе из десятков установок с различными линейными размерами, токами, магнитными полями, плотностью плазмы и т. п. Для будущего термоядерного реактора потребуется температура плазмы 80—100 млн. °С. Продолжительность «жизни» плазмы, т. е. то время, в течение которого удается удерживать плазму, не позволяя ей коснуться стенок реактора и охладиться в «Токамаке-10», составляет 60—70 мс.
Определяющим параметром для термоядерной реакции является произведение времени удержания плазмы на ее плотность. Чтобы при термоядерном горении энергии выделялось больше, чем вкладывается в плазму, должно прореагировать как можно больше частиц. И чем плотнее плазма, тем больше столкновений происходит в единицу времени. Для дейтериево-тритиевой плазмы это произведение должно быть не менее 2 • 1014 см-3-С.
В настоящее время проектируются демонстрационные реакторы с дейтериево-тритиевой плазмой, предназначенные для опытно-промышленной эксплуатации системы нагревания, удержания и контроля плазмы, подачи топлива, его регенерации, для изучения свойств материалов в мощных тепловых и нейтронных потоках.
Продолжительность удержания плазмы в реакторе возрастает с увеличением объема плазмы, а следовательно, увеличиваются габариты и стоимости термоядерных установок.
Сумма затрат становится ощутимой уже при сооружении токамаков нынешнего поколения. Поэтому различные страны объединили усилия по созданию УТС.
Обсуждение задач международного сотрудничества привело к идее проекта международного реактора ИНТОР, в котором должна быть осуществлена самопод- держивающаяся термоядерная реакция в импульсном режиме. Дейтериево-тритиевая плазма в течение 4—5 с будет нагреваться до необходимой температуры примерно в 100 млн. °С, далее средства нагревания отключаются и в течение 200 с идет реакция. Затем прерывается реакция, чтобы удалить шлаки — продукты взаимодействия плазмы со стенками реактора, впрыскивается новая порция топлива и через 20—30 с повторяется цикл. За стенкой реактора будут установлены так называемые блан- кеты (от английского слова blanket — одеяло)—устройства, которые поглощают потоки нейтронов, выделяющихся в результате реакции, и преобразуют их энергию в теплоту.
Проектируемая тепловая мощность ИНТОРа довольно велика — около 600 МВт, это сравнимо с мощностью первых промышленных АЭС.
На первом этапе реакция в термоядерных реакторах будет идти не на чистом дейтерии, а на смеси дейтерия с тритием. Но в природе нет трития в достаточных количествах, его предполагается получить в реакторе искусственно из лития.
В бланкете должен идти процесс наработки трития так, чтобы система сама обеспечивала себя этим горючим.
Через 2—3 года после пуска ИНТОРа предполагается получить на нем электроэнергию. При этом циркулирующая в бланкете вода будет отбирать энергию у выделяющихся в реакции нейтронов и в теплообменнике передавать теплоту рабочему телу —пару, поступающему в турбину. ИНТОР сможет иметь электрическую мощность 5—10 МВт — примерно такую же, как первая АЭС.
В настоящее время разрабатывается также проект опытного термоядерного реактора (ОТР). Его реализация преследует ряд целей: продемонстрировать возможность надежного и безопасного производства электроэнергии и ядерного топлива; получить необходимый опыт разработки, строительства и эксплуатации реактора-то- камака в режимах, близких по длительности работы и удельным нагрузкам к режиму энергетического реактора; создать экспериментальную базу для научных и инженерных работ в области термоядерной энергетики; испытать конструкционные материалы и проверить принципиальные технические решения создания термоядерных электростанций.
Разработка ОТР в настоящее время находится на стадии концептуального проектирования. Предполагается, что большой радиус плазменного «бублика» в ОТР составит 5,5 м, а малый—1,1 м. Плазма будет иметь плотность 1,4-1014 см-3 при температуре около 120 млн. °С. Общая тепловая мощность реактора составит 1000 МВт, электрическая — 300 МВт. Первый советский термоядерный реактор будет представлять собой гибридную систему, в которую заложена идея своеобразного симбиоза атомной и термоядерной энергетики.
Выяснилось, что утилизацию урана-238 можно с большой эффективностью проводить и в термоядерном реакторе. Для этого камеру, в которой будет протекать реакция синтеза, нужно окружить бланкетом из природного урана. Нейтроны, выделяющиеся в процессе синтеза и попадающие в бланкет, будут вызывать деление ядер урана и воспроизводство плутония из урана-238. Примерно 75— 80% мощности такого реактора будет обеспечено реакциями деления, а термоядерные реакции будут в основном служить источником быстрых нейтронов. К параметрам плазмы и стенкам камеры в гибридном реакторе предъявляются менее жесткие требования и реализовать их будет легче.
Гибридные реакции могут стать промежуточным звеном на пути к чистым термоядерным реакторам.
В настоящее время во многих лабораторях мира интенсивно ведутся исследования по лазерному термоядерному синтезу (JITC). Впервые идея использования лазеров для нагревания плазмы была высказана советскими
физиками Н. Г. Басовым и О. Н. Крохиным. Твердые или жидкие частички из смеси дейтерия с тритием помещаются в фокус сходящихся лазерных лучей, сжимаются и нагреваются до высоких температур. Известно, что плотность ядер в твердом веществе почти в миллион раз выше, чем плотность плазмы в токамаке. А скорость реакции в более плотном веществе выше. Поэтому, если быстро нагреть такую частичку вещества и сжать ее давлением лазерных лучей, вещество успеет полностью прореагировать — быстрее, чем плазма распадется и остынет.
В Институте атомной энергии им. И. В. Курчатова отрабатывают другой способ быстрого нагревания и сжатия термоядерных мишеней. Несколько мощных линейных ускорителей одновременно «выстреливают» со всех сторон по мишени пучками релятивистских (движущихся близко к скорости света) электронов. Как и с помощью лазеров, здесь удается быстро нагреть мишень до нескольких десятков миллионов градусов и достичь ее тысячекратного сжатия.
