Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тсис_экз.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.33 Mб
Скачать

18. Синхронный триггер. Понятие о синхронизации.

Синхронные триггеры  реагируют на информационные сигналы при наличии разрешающего сигнала на специально предусматриваемом входе С. Синхронные триггеры подразделяют на триггеры со статическим управлением по С-входу и с динамическим управлением Tpиггepы со статическим управлением реагируют на информационные сигналы при подаче на вход С уровня 1 (прямой С-вход) или 0 (инверсный C-вход).

Синхронный одноступенчатый RS-триггер отличается от асин­хронного наличием С-входа для синхронизирующих (тактовых) импульсов. Синхронный триггер состоит из асинхронного RS-триг­гера и двух логических элементов на его входе. Рассмотрим работу триггера, построенного на элементах И–НЕ (рис. 2.2, a).

При С = 0 входные логические элементы 1 и 2 блокированы: их состояния не зависят от сигналов на S- и R-входах и соответст­вуют логической 1, т. е. q1 = q2 = 1. Для асинхронного RS-триггера на элементах И–НЕ такая комбинация входных сигналов являет­ся нейтральной, поэтому триггер находится в режиме хранения за­писанной информации.

При С = 1 входные логические элементы открыты для восприя­тия информационных сигналов и передачи их на входы асинхронно­го RS-триггера. Таким образом, синхронный триггер при наличии разрешающего сигнала на S-входе работает по правилам для асин­хронного триггера.

19. Узлы эвм. Регистры. Счетчики. Сумматоры. Шифраторы и дешифраторы. Мультиплексоры. Алу.

Триггер – простейшее последовательностное устройство, которое может длительно находиться в одном из нескольких возможных устойчивых состояний и переходить из одного в другое под воздействием входных сигналов. Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти. Триггер — один из базовых элементов цифровой техники.

Триггерные схемы классифицируют по следующим признакам:

способу приёма логических сигналов;

функциональным возможностям;

принципу построения;

числу устойчивых состояний (обычно устойчивых состояний два, реже - больше);

числу уровней — два уровня (высокий, низкий) в двухуровневых элементах, три уровня (положительный, ноль, отрицательный) в трёхуровневых элементах.

 По способу работы с сигналами различают асинхронные, синхронные и смешанные триггерные схемы, статические и динамические.

 Асинхронный триггер изменяет своё состояние непосредственно в момент появления соответствующего информационного сигнала.

 Синхронные триггеры реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации С (от англ. clock). Этот вход также обозначают терминами «строб», «такт». Синхронные триггеры в свою очередь подразделяют на триггеры со статическим (статические) и динамическим (динамические) управлением по входу синхронизации С.

 Статические триггеры воспринимают информационные сигналы при подаче на вход С логической единицы (прямой вход) или логического нуля (инверсный вход).

 Динамические триггеры воспринимают информационные сигналы при изменении (перепаде) сигнала на входе С от 0 к 1 (прямой динамический С-вход) или от 1 к 0 (инверсный динамический С-вход).

 Статические триггеры в свою очередь подразделяют на одноступенчатые (однотактные) и двух-ступенчатые (двухтактные).

 В одноступенчатом триггере имеется одна ступень запоминания информации, а в двухступенчатом — две такие ступени. Вначале информация записывается в первую ступень, а затем переписывается во вторую и появляется на выходе. Двухступенчатый триггер обозначают ТТ.

 По структурному построению — однотактные (триггеры защёлки), двухтактные и триггеры с динамическим управлением. По способу реакции на помехи — прозрачные и непрозрачные. Непрозрачные, в свою очередь, делятся на проницаемые и непроницаемые. По функциональному назначению — RS, D, JK, T, RR, SS, EE, DV.

 При изготовлении триггеров применяются преимущественно полупроводниковые приборы (обычно полевые транзисторы), в прошлом — электронные лампы. В настоящее время логические схемы, в том числе с использованием триггеров, создают в интегрированных средах разработки под различные программируемые логические интегральные схемы (ПЛИС)

 Используются в основном в вычислительной технике для организации компонентов вычислительных систем: процессоров, регистров, счётчиков, ОЗУ.

 По функциональным возможностям триггеры разделяют на следующие классы:

с раздельной установкой состояния 0 и 1 (RS-триггеры). Если триггер является синхронным — добавляется вход синхронизации C.;

универсальные (JK-триггеры);

с приёмом информации по одному входу D (D-триггеры, или триггеры задержки);

со счётным входом Т (Т-триггеры).

 Каждый тип триггера имеет собственную таблицу работы (таблицу истинности). Выходное состояние триггера обычно обозначают буквой Q. Индекс возле буквы означает состояние до подачи сигнала (t) или после подачи сигнала (t+1).

 Регистр — последовательностное логическое устройство, используемое для хранения n-разрядных двоичных чисел и выполнения преобразований над ними.

 Регистр представляет собой упорядоченную последовательность триггеров, число которых соответствует числу разрядов в слове. С каждым регистром обычно связано комбинационное цифровое устройство, с помощью которого обеспечивается выполнение некоторых операций над словами. Фактически любое цифровое устройство можно представить в виде совокупности регистров, соединённых друг с другом при помощи комбинационных цифровых устройств.

 Основой построения регистров являются D-триггеры.

 Типичными являются следующие операции:

приём слова в регистр;

передача слова из регистра;

поразрядные логические операции;

сдвиг слова влево или вправо на заданное число разрядов;

преобразование последовательного кода слова в параллельный и обратно;

установка регистра в начальное состояние (сброс).

 Дешифраторами называются комбинационные устройства, преобразующие n-разрядный двоичный код в логический сигнал, появляющийся на том выходе, десятичный номер которого соответствует двоичному коду.

 Дешифратор работает по следующему принципу: пусть дешифратор имеет N входов, на них подано двоичное слово xN-1xN-2...x0, тогда на выходе будем иметь такой код разрядности меньшей или равной 2^N, что разряд, номер которого равен входному слову, принимает значение единицы, все остальные разряды равны нулю. Очевидно, что максимально возможная разрядность выходного слова равна 2^N. Такой дешифратор называется полным. Если часть входных наборов не используется, то число выходов меньше 2^N, и дешифратор является неполным.

 Часто дешифраторы дополняются входом разрешения работы E. Если на этот вход поступает единица, то дешифратор функционирует, в ином случае на выходе дешифратора вырабатывается логический ноль вне зависимости от входных сигналов

 Существуют дешифраторы с инверсными выходами, у такого дешифратора выбранный разряд показан нулем.

 Функционирование дешифратора описывается системой конъюнкций:


 Обратное преобразование осуществляет шифратор.

Шифратор или кодер — узел ЭВМ, преобразующий унитарный код в некоторый позиционный код. Если выходной код является двоичным, то шифратор наз двоичным. С помощью шифраторов можно преобразование цифр, десятичных чисел в двоичное представление с использованием любого другого двоично-десятичного кода. 

Счётчик — устройство, на выходах которого получается двоичный (двоично-десятичный) код, определяемый числом поступивших импульсов. Счётчики могут строится на T-триггерах. Основной параметр счётчика — модуль счёта — максимальное число единичных сигналов, которое может быть сосчитано счётчиком. Счётчики обозначают через СТ (от англ. counter).

Мультиплексоры — узлы, преобр параллельные цифровые коды в последовательные. В этом устройстве выход соединяется с одним из входов в зависимости от значения адресных входов. Мультиплексоры широко используют для синтеза комбинационных устройств, так как это способствует значительному уменьшению числа используемых микросхем.

Сумматор — устр-во, предназначенные для выполнения арифметических и логических операций над числами в двоичном и двоично-десятичном коде. Бывают: одноразрядные, многоразрядные, двоично-десятичные, накапливающие и пр.

Арифметическо-логическое устройство (АЛУ) — блок процессора, который под управлением устройства управления (УУ) служит для выполнения арифметических и логических преобразований (начиная от элементарных) над данными называемыми в этом случае операндами. Разрядность операндов обычно называют размером машинного слова.