Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тсис_экз.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.33 Mб
Скачать

31. Сегментная и страничная организация доступа к памяти.

Сегментно-страничная организация

Селектор (индекс*8) & GDTR => контроль границ => таблица дескрипторов (базовый адрес, разное, правила доступа) => базовый адрес + относительный адрес => линейный адрес в выбранном сегменте

Базовый адрес сегмента в защищённом режиме содержится в дескрипторе, выбор которого осуществляется с помощью селектора. Формирование относительного адреса определяется используемым способом адресации и может быть выполнен по-разному. Если МП работает в режиме, при котором не используется страничная адресация, то получившийся линейный адрес служит физическим.

(длинный вариант)

В основе сегментации лежит создание нескольких независимых адресных пространств. каждый сегмент состоит из линейной последовательности адресов от 0 до мак. Каждый сегмент может иметь произвольную длину, которая может меняться в ходе работы. (то есть фактически сегментация представляет собой двух мерный массив) каждый сегмент может иметь свой уровень защиты (напр.: только для чтения)

Основой получения физического адреса, выдаваемого на адресную шину микропроцессора, служит логический адрес. Он состоит из двух частей: селектора, являющегося идентификатором сегмента, и смещения в сегменте. Смещение в сегменте (32 разряда) (эффективный адрес) вычисляется по задаваемому в команде режиму адресации операнда и является виртуальным адресом операнда. При обращении к команде в качестве смещения выступает значение регистра-указателя команд. Селектор размещается в сегментном регистре (см. рис.). Основная его часть представляет собой номер (INDEX), по которому в одной из специальных таблиц дескрипторов можно найти дескриптор (описатель) данного сегмента. Вид используемой таблицы определяется битом TI (table indicator) селектора. Селектор содержит также двухразрядное поле RPL, используемое при организации защиты памяти по привилегиям. Дескриптор (рис. ниже) содержит сведения о сегменте. В одном из его полей содержится базовый адрес сегмента. В остальных полях записана дополнительная информация о сегменте: длина, допустимый уровень прав доступа к данному сегменту с целью защиты находящейся в нем информации, тип сегмента (сегмент кода, сегмент данных, специальный системный сегмент и т.д.) и некоторые другие атрибуты.

Сумма полученного из дескриптора базового адреса сегмента и вычисленного смещения дает линейный адрес операнда, который при включенном механизме страничного преобразования представляет собой номер виртуальной страницы (старшие 20 разрядов) и смещение операнда в странице (младшие 12 разрядов линейного адреса в соответствии с объемом страницы в 4 Кбайт).

31 Сегментно-страничная организация

В рамках сегментированной модели адресации для программы память представляется группой независимых адресных блоков, называемых сегментами. Для адресации байта памяти программа должна использовать логический адрес, состоящий из селектора сегмента и смещения. Селектор сегмента выбирает определенный сегмент, а смещение указывает на конкретный байт в адресном пространстве выбранного сегмента. Селектор сегмента может находиться либо непосредственно в коде команды, либо в одном из сегментных регистров. Смещение также может либо непосредственно находиться в коде команды, либо вычисляться на основе значений регистров общего назначения.

Механизм сегментации обеспечивает превосходную защиту, но он не очень удобен для реализации виртуальной памяти (подкачки). В дескрипторе сегмента есть бит присутствия, по нему процессор определяет, находится ли данный сегмент в физической памяти или на внешнем запоминающем устройстве (на винчестере). В последнем случае генерируется исключение #11, обработчик которого может подгрузить сегмент в память. Неудобство заключается в том, что различные сегменты могут иметь различную длину. Этого можно избежать, если механизм подкачки реализовывать на основе страничного преобразования. Особенностью этого преобразования является то, что процессор в этом случае оперирует с блоками физической памяти равной длины (4 Кбайт) – страницами. Страницы не имеют непосредственного отношения к логической структуре программы. Кроме того, в МП подсемейства P6 страничная трансляция обеспечивает 36-битную физическую адресацию памяти (64 Гбайт). Страничное преобразование действует только в защищенном режиме и включается установкой в 1 бита PG в регистре CR0.

В страничном преобразовании участвуют два типа структур: каталоги таблиц (Page Directory) и таблицы страниц (Page Table). Эти структуры состоят из 1024 32-битных элементов. Элементы содержат старшие 20 бит физического адреса адресуемых объектов. Элементы таблицы страниц (Page Table Entry – PTE) адресуют страницы, а элементы каталога таблиц (Page Directory EntryPDE) адресуют таблицы страниц. Старшие 20 бит физического адреса каталога таблиц хранятся в регистре CR3 (Page Directory Base Register – PDBR) (это единственный регистр МП, который содержит физический адрес памяти). Все структуры выровнены по границе страницы, см. рис. 8.2.

Рис. 8.2. Стандартная 2-уровневая схема страничной трансляции

В процессе страничной трансляции адресов полученный линейный адрес разбивается на три части. Старшие десять бит (Directory) линейного адреса являются индексом элемента из каталога таблиц. По этому элементу определяется физический адрес таблицы страниц. Биты 21-12 (Table) линейного адреса выбирают элемент из этой таблицы страниц. Выбранный элемент определяет физический адрес страницы. Младшие 12 бит (Offset) линейного адреса определяют смещение от начала страницы.

Страницы начинаются на границах 4 Кбайт областей памяти, поэтому младшие 12 бит адреса страницы всегда равны нулю. В каталоге таблиц элементы хранят физические адреса таблиц страниц. В таблице страниц элементы хранят физические адреса самих страниц.