- •Поняття системи. Складні системи, методи дослідження складних систем.
- •Зміст та форма представлення словника даних. Бнф-нотація.
- •Системний підхід. Головні визначення. Принципи системного підходу.
- •Концептуальні моделі предметного середовища. Діаграма Чена як інфологічна модель предметного середовища. Джерела та правила побудови діаграми.
- •Діаграми Чена. Елементи
- •Правила побудови
- •2.Діаграма потоків даних системи (dfd-модель)
- •Екзаменаційний білет № _4_________
- •Предметна область системного аналізу. Передумови виникнення системного підходу.
- •Передумови виникнення
- •Концептуальні моделі предметного середовища. Ідентифікація понять, визначення атрибутів та асоціацій.
- •Екзаменаційний білет № _5___
- •Класифікація моделей системи.
- •Класифікація моделей.
- •Діаграми „сутність-зв”язок”: призначення, місце застосування, правила побудови, erd-стандарти. Сутності, відношення та зв’язки в нотації Чена.
- •Екзаменаційний білет № _6__
- •Аналіз проблеми. Структуровані, слабко структуровані та неструктуровані проблеми
- •Діаграми потоків даних dfd як один з головних інструментів структурного аналізу та проектування інформаційних систем.
- •Умовні позначки
- •Екзаменаційний білет № _7_________
- •Аналіз цілей побудови системи.
- •Класифікація цілей
- •Нормалізація схем відношень
- •Комп’ютерні інформаційні технології як складні системи.
- •Види інформаційних систем:
- •Моделі потоків даних (dfd-моделі): призначення, місце застосування в системному аналізі, правила побудови, приклади.
- •Екзаменаційний білет № ____9______
- •Багатоаспектна декомпозиція складної системи. Поняття елемента системи.
- •Технологічні та інформаційні залежності між побудовою процесних моделей потоків даних, словників даних, специфікації процесів та інфологічних моделей предметної області.
- •Екзаменаційний білет № ____10______
- •Система та модель. Класифікація моделей систем
- •Класифікація моделей.
- •Вимоги до побудови специфікації процесу. Опис специфікації на основі структурованої натуральної мови.
- •Классификация проблем по степеню их структуризації
- •Моделі складної системи. Види математичних моделей. Складові математичних моделей.
- •Екзаменаційний білет № ___12_______
- •Дерево цілей системи
- •Діаграми потоків даних (dfd) як один з головних інструментів структурного аналізу та проектування інформаційних систем.
- •Екзаменаційний білет № _14_________
- •Основні етапи системного аналізу.
- •Моделі декомпозиції системи.
- •Екзаменаційний білет № ___15_______
- •Поняття структури системи. Моделі представлення структури систем.
- •Математичні моделі системного аналізу. Імітаційне моделювання.
- •Екзаменаційний білет № ____16______
- •Порівняння sadt – dfd методологій структурного моделювання.
- •Поняття системи, навколишнього середовища, мети. Класифікація систем
- •Екзаменаційний білет № ___17_______
- •Діаграми потоків даних як основний інструмент системного аналізу та проектування систем.
- •Специфікація процесів, вимоги, засоби та мови опису специфікації процесу.
- •Умовні позначки при проектуванні діаграм потоків даних
- •Функції системи. Моделі функціонального аналізу.
- •Моделі декомпозиції систем. Дерево цілей. Моделі функціональної та організаційної декомпозиції системи
- •Нормалізація схем відношень
- •Екзаменаційний білет № ____20______
- •Технологічні та інформаційні залежності між побудовою процесних моделей потоків даних, словників даних, специфікації процесів та інфологічних моделей предметної області.
- •Постановка задачі. Алгоритм розв’язання задачі
- •Екзаменаційний білет № ____21______
- •Графічні моделі як різновидність інформаційних моделей системного аналізу
- •Етапи та цілі системного аналізу.
- •Екзаменаційний білет № ___22_______
- •Моделі інформаційних потоків: призначення, місце застосування в системному аналізі, правила побудови, приклади
- •Приклади несистемного підходу проектування систем
- •Екзаменаційний білет № __23________
- •Особливості моделювання комп’ютерних інформаційних систем за допомогою діаграм потоків даних.
- •Умовні позначки
- •Приклади порушення першої та нормальної форми представлення даних
- •Екзаменаційний білет № ___24_______
- •Дерево функцій системи та ієрархічні моделі потоків даних.
- •Специфікації процесів та постановки задач системи.
- •Екзаменаційний білет № ____25______
- •Зв'язок між цільовим та функціональним аналізом побудови системи. Аналіз дерева цілей.
- •Правила побудови контекстних моделей системи.
- •Правила побудови діаграм
Екзаменаційний білет № ___15_______
Поняття структури системи. Моделі представлення структури систем.
Структура – це множина частин або форм (елементів), які знаходяться у взаємодії та специфічному порядку у просторі і в часі елементів і зв'язків системи, необхідному для реалізації функцій. Отже, функція є первинною щодо структури. Властивістю структури є можливість існування протягом певного часу за допомогою зв'язуючого пристосування для збереження елементів (частин) та їх відношень приблизно в одному й тому ж порядку, реагуючи при цьому на дії середовища.
Структура системи зберігається та збагачується через її функціональні трансформації, в той же час структура полегшує ці перетворення. В організаціях та в більш широкій соціальній структурі наявні зв'язуючі сили, що підтримують форму структури. З точки зору практики представлення структури бажано спростити, щоб ідентифікувати її елементи та взаємні зв'язки між ними. Структура системи може бути охарактеризована за типами зв'язків, які в ній є або які в ній переважають. Найпростішими зв'язками є
паралельне, послідовне з'єднання та обернений зв'язок. Обернений зв'язок виконує регулюючу роль у системі.
Можливості структури в достатньо повній мірі розкриваються її топологічними ознаками.
За топологією внутрішніх зв’язків розділяють такі структури:
послідовні (рис. 2.1 а), паралельні (рис. 2.1 б), радіальні (рис. 2.1 в), кільцеподібні (рис. 2.1 г), типу повний граф (рис. 2.1 д), деревоподібні (рис.е), незв’язані (рис. 2.є)
Централізована структура передбачає реалізацію усіх процесів керування об’єктами в одному органі керування, який безпосередньо отримує інформацію про стани об’єктів і передає керуючі сигнали кожному з них. Важливою перевагою такого способу керування є можливість організації глобально-оптимального управління. Недоліком цього методу є необхідність великих об’ємів засобів накопичення, високої продуктивності органів керування.
Децентралізована структура будується за умови незалежності об’єктів керування. Система з такою структурою складається з відносно незалежних між собою підсистем. Недоліком такої структури є неможливість організації глобально-оптимального управління.
Математичні моделі системного аналізу. Імітаційне моделювання.
Математичне моделювання - це процес встановлення відповідності даному реальному об'єкту деякого математичного об'єкта, званого математичної моделлю. В принципі, для дослідження характеристик будь-якої системи математичними методами, включаючи і машинні, повинна бути обов'язково проведена формалізація цього процесу, тобто побудовано математичну модель. Вид математичної моделі залежить як від природи реального об'єкта, так і від завдань дослідження об'єкта, від необхідної достовірності і точності рішення задачі. Будь-яка математична модель, як і всяка інша, описує реальний об'єкт з деяким ступенем наближення.
Математичні моделі поділяються на аналітичні та імітаційні.
Аналітичне математичне моделювання передбачає запис процесів функціонування системи у вигляді співвідношень інтегро-диференціальних та алгебраїчних виразів.
Імітаційне моделювання – реалізація моделі або сукупності моделей системи за допомогою алгоритму, який відтворює процес функціонування системи в часі, тобто її динаміку.
До базових моделей належать також модель чорного ящика, модель складу системи і модель структури. Ці види моделей широко використовуються для формування моделей організацій. Наприклад, модель чорного ящика використовується для опису взаємодії організації з навколишнім середовищем. Модель складу використовується для відображення складу функцій організації, цілей, завдань, персоналу і т.д. Модель структури використовується для відображення структури підпорядкованості в організації, комунікаційних взаємодій і т.д.
Імітаційні моделі дозволяють проводити чисельні експерименти і є надзвичайно універсальними.
При експериментуванні на імітаційній моделі можливе внесення таких змін:
• в структуру моделі
• моделей поведінки, параметрів моделей
• параметрів та законів розподілу випадкових факторів
• значень та зміни в часі зовнішніх змінних.
Імітаційна модель повинна відповідати таким вимогам:
• логічна причинно-наслідковість повинна відповідати характеристикам системи, що моделюється
• характер та зміст інформації про процеси, що спостерігаються за допомогою моделі повинні зберігатися подібними до системи
• в моделі повинні спостерігатися змінні, що єсуттєвими з точки зору дослідника в реальній системі.
Реалізація імітаційного підходу набуває все більших можливостей з розвитком комп’ютерної техніки і це своєю чергою відбивається на розробці методологій імітаційного моделювання. Методології імітаційного моделювання являють собою комбінування методологій побудови складових імітаційних моделей, таких як застосовуються при аксіоматичному підході, побудові оптимізаційних моделей та моделей “чорної скриньки”.
