- •Классификация и маркировка двс. Модели и модификации двигателей.
- •Процесс сгорания в карбюраторном двс. Фазы горения.
- •Теоретические циклы двс. Индикаторные диаграммы циклов V-const
- •Нарушение нормального сгорания в Двс с искровым зажиганием
- •Основные понятия и определения
- •Процесс сгорания в дизельном двигателе
- •Принцип действия поршневых четырехтактных двигателей
- •Процесс расширения в карбюраторном двигателе. Показатели процесса
- •Принцип действия двухтактного двигателя. Соотношение мощностей двухтактного и четырехтактного двигателей
- •Процесс расширения в дизеле. Показатели процесса.
- •11)Индикаторная диаграмма дизельного двигателя при смешанном цикле
- •12)Политропа расширения.Определение политропы для дизельного и карбюраторного двигателя.
- •13) Индикаторная диаграмма двухтактного двигателя
- •14)Часовой и индикаторный расход топлива.Способы их определения
- •15)Преимущества и недостатки 4-хтактных двигателей в сравнении с 2-хтактными двс
- •16)Мощность механических потерь .Причины увеличения механических потерь при эксплуатации.
- •17) Индикаторная мощность и индикаторный кпд двигателя.
- •18)Понятие об установившихся и неустановившихся режимах работы двс
- •19)Эффективная мощность и эффективный кпд двигателя
- •20)Кинематика и динамика кшм.Кинематика центрального кривошипно-шатунного механизма.
- •21 Порядок работы многоцилиндрового двигателя
- •22 Силы и моменты, действующие в кмш одноцилиндрового двигателя
- •23 Процессы газообмена в карбюраторном двс. Показатели процесса выпуска.
- •24 Уравновешивание двигателя. Внутренняя и внешняя неуравновешенность .
- •25 Процессы газообмена в дизельном двигатели. Показатели процесса выпуска.
- •26 Понятие о уравновешенности двигателя. Условия полной уравновешенности двигателя.
- •27 Показатели процесса впуска
- •28 Уравновешивание многоцилиндрового двигателя. Порядок работы.
- •29 Процессы газообмена в карбюраторном двс. Показатели процесса впуска.
- •30 Тепловой баланс двигателя. Уравнение внешнего теплового баланса двигателя и его анализ.
- •41 Параметры двс, характеризующие его конструктивные особенности.
- •42 Смесеобразование в дизельном двс . Объёмно-пленочное смесеобразование.
- •43 Мощностные параметры двс
- •44 Пленочное смесеобразование в дизелях. Конструкция камеры сгорания.
- •45 Весовые параметры двс46. Предкамерное смесеобразование
- •47. Процесс сжатия в двс. Показатели процесса и их определения
- •48. Регулирование двигателей. Назначение и классификация регуляторов
- •49. Теплообмен в процессе сжатия. Политропа сжатия и определение ее численного значения
- •50. Регулирование дизельного двигателя. Механические центробежные регуляторы.
Процесс сгорания в карбюраторном двс. Фазы горения.
Процесс сгорания смеси в двигателе начинается с момента проскакивания искры между электродами свечи зажигания в точке m с опережением ер”. Однако видимое повышение давления начинается лишь в точке п.
Период от момента зажигания (точка т) до момента .видимого повышения давления (точка п) называют индукционным периодом процесса горения, или периодом задержки воспламенения. В течение этого периода происходит пред-пламенное окисление топлива с незначительным повышением температуры и без повышения давления. Скорость сгорания в этой фазе в основном определяется свойствами топлива и составом смеси. На продолжительность этой фазы оказывают влияние: коэффициенты избытка воздуха и остаточных газов, структура молекул топлива, энергия источника зажигания, степень сжатия, нагрузка и частота вращения коленчатого вала двигателя. В период протекания первой фазы сгорают около 6—8 % смеси от общего объема камеры сгорания. Продолжительность этой фазы соответствует 4—6° угла поворота коленчатого вала.
Начиная от точки п, давление резко повышается вплоть до точки О. Этот период II называют видимым периодом процесса горения. В течение его сгорает около 90% смеси с наибольшей скоростью. Продолжительность этой фазы соответствует 20—30° угла поворота коленчатого вала и зависит от состава смеси, степени сжатия, момента зажигания, формы камеры сгорания, степени завихрения смеси и нагрузки двигателя.
Рис. 265. Индикаторная диаграмма, развернутая по углу поворота коленчатого вала: а — карбюраторного двигателя; б — дизельного двигателя
Период II характеризуется скоростью нарастания давления на каждый градус поворота коленчатого вала. Среднее значение этой величины называется жесткостью процесса сгорания и находится в пределах 0,12—0,26 МПа на градус поворота коленчатого вала.
Опытами установлено, что максимум мощности двигателя получается при наибольшем давлении цикла (при 10—15° поворота коленчатого вала после ВМТ).
Период III называется периодом догорания смеси. Он протекает по линии расширения. Продолжительность этого периода невелика и зафиксировать ее окончание на индикаторной диаграмме трудно, так как для этого необходимо знать момент полного сгорания смеси. Скорость распространения пламени при нормальном протекании процесса сгорания составляет 20—40 м/с.
Качественное и своевременное протекание процесса сгорания зависит от ряда факторов: угла опережения зажигания, состава рабочей смеси, вихревого движения заряда, частоты вращения коленчатого вала, нагрузки двигателя, степени сжатия, формы камеры сгорания и места установки свечи зажигания.
Двигатель развивает наибольшую мощность, если рабочая смесь сгорает в минимальном объеме. Поэтому опережение зажигания должно быть выбрано с таким расчетом, чтобы к приходу поршня в ВМТ большая часть смеси уже воспламенилась. Величина наивыгоднейшего угла опережения зажигания зависит от частоты вращения коленчатого вала, качества смеси, степени сжатия и устанав- . ливается для каждого отдельного случая опытным путем. Опережение зажигания должно увеличиваться с уменьшением скорости сгорания горючей смеси и увеличением частоты вращения коленчатого вала. Повышение степени сжатия вызывает уменьшение наивыгоднейшего утла опережения зажигания, что объясняется возрастанием при этом скорости сгорания.
Диаграммы, демонстрирующие полез- . ную площадь индикаторной диаграммы в случаях слишком раннего и слишком позднего, а также наивыгоднейшего момента зажигания, приведены на рис. 266. При слишком раннем зажигании (рис. 266, а) возможно значительное повышение давления в камере сгорания до прихода поршня в ВМТ, сопровождающееся большим противодавлением на поршень, и падение мощности. При слишком позднем зажигании (рис. 266, б) происходит понижение температуры вследствие значительных тепловых потерь.
Если рабочая смесь перед воспламенением подвергается действию высоких температур и давлений, то нормальное сгорание в двигателе в некоторых случаях переходит во взрывную форму, называемую детонацией, или детонационным сгоранием.
При детонации возникают стуки, двигатель перегревается и работает неустойчиво, из глушителя выходит черный дым. Работа двигателя при детонационном сгорании недопустима, так как вызывает не только ускоренный износ, но и разрушение деталей кривошипно-шатунного механизма. Стуки объясняются ударами волн о стенки камеры и о днище поршня, а также вибрацией деталей.
Причиной возникновения детонации в двигателе являются активные перекиси, которые представляют собой промежуточные продукты окисления углеводородных молекул, образующихся в результате взаимодействия активных молекул кислорода и топлива. Скорость распространения пламени при детонации в двигателе достигает 1500—2000 м/с.
Повышение степени сжатия сопровождается увеличением температуры и давления в процессах сжатия и сгорания, что создает благоприятные условия для возникновения детонации. Выбор степени сжатия -для двигателей производят с учетом предназначенного для него топлива, формы камеры сгорания, размеров цилиндра, материала головки цилиндра и поршня.
Форма камеры сгорания в известной степени определяет характер распространения фронта пламени. Компактная камера сгорания с размещением свечи зажигания в центре так, чтобы пламя распространялось равномерно во все стороны, позволяет повысить допустимую степень сжатия, при которой процесс сгорания протекает без детонации.
Рис. 266. Влияние угла опережения зажигания на величину полезной площади индикаторной диаграммы двигателя: а — слишком раннее зажигание; б слишком позднее зажигание; в – наивыгоднейшее опережение за-
Большое влияние на склонность двигателя к детонации оказывает также материал головки цилиндров и поршней. Поэтому для получения бездетонационного сгорания указанные детали изготовляют из материалов, обладающих большой теплопроводностью.
Появление слоя нагара вызывает ухудшение теплопроводности деталей и увеличивает степень сжатия двигателя. Чтобы избежать детонации вследствие нага-рообразования, уменьшают опережение зажигания.
Раннее зажигание может привести к появлению детонации за счет повышения давления и температуры сгорания. Повышение температуры охлаждающей жидкости увеличивает возможность детонации.
Детонация появляется также при обогащении горючей смеси, снижении частоты вращения коленчатого вала и увеличении нагрузки двигателя.
Фазы горения |
Во время процесса впуска в камеру сгорания поступает свежий заряд топливной смеси, и начинается его перемешивание с находящимися там остаточными газами. Процесс перемешивания продолжается и во время такта сжатия, когда после появления искры на электродах свечи зажигания начинается процесс горения. В результате появления искры образуется некоторый объем плазмы и формируется ядро пламени, которое может распространяться в несгоревшем заряде топливной смеси. Процесс воспламенения и начальный этап горения, на котором формируется ядро пламени, определяются в основном химическими реакциями и свойствами топливной смеси. Причем начальный этап горения более чувствителен к характеристикам потоков горящих газов в зоне горения и около нее. Когда ядро пламени становится достаточно большим, оно постепенно преобразуется в развитое распространяющееся пламя. Процесс распространения пламени обычно определяется законами механики жидкости и газа; в зависимости от характеристик потока газа и состава заряда топливной смеси существенное значение на этом этапе могут иметь и химические явления. В конце концов пламя охватывает почти всю смесь, а на заключительной стадии процесса сгорания около стенок оно медленно затухает и гасится в результате теплоотвода в стенки. Процесс догорания несгоревших газов после гашения пламени является диффузионным процессом. Весь процесс горения является неустановившимся процессом, но, исходя из приведенного выше краткого описания, его в соответствии с развитием зоны горения можно разделить на следующие этапы:
Это деление пригодно для нормально происходящих процессов сгорания при отсутствии таких явлений, как пропуски зажигания, неполное сгорание или детонация. Указанные явления нарушают нормальный процесс сгорания, и возможность их появления характеризует предельные режимы работы двигателя в заданных условиях. Поскольку на каждом из четырех этапов сгорания определяющую роль играют различные процессы, в последующих разделах эти этапы будут рассмотрены отдельно. |
