- •Классификация и маркировка двс. Модели и модификации двигателей.
- •Процесс сгорания в карбюраторном двс. Фазы горения.
- •Теоретические циклы двс. Индикаторные диаграммы циклов V-const
- •Нарушение нормального сгорания в Двс с искровым зажиганием
- •Основные понятия и определения
- •Процесс сгорания в дизельном двигателе
- •Принцип действия поршневых четырехтактных двигателей
- •Процесс расширения в карбюраторном двигателе. Показатели процесса
- •Принцип действия двухтактного двигателя. Соотношение мощностей двухтактного и четырехтактного двигателей
- •Процесс расширения в дизеле. Показатели процесса.
- •11)Индикаторная диаграмма дизельного двигателя при смешанном цикле
- •12)Политропа расширения.Определение политропы для дизельного и карбюраторного двигателя.
- •13) Индикаторная диаграмма двухтактного двигателя
- •14)Часовой и индикаторный расход топлива.Способы их определения
- •15)Преимущества и недостатки 4-хтактных двигателей в сравнении с 2-хтактными двс
- •16)Мощность механических потерь .Причины увеличения механических потерь при эксплуатации.
- •17) Индикаторная мощность и индикаторный кпд двигателя.
- •18)Понятие об установившихся и неустановившихся режимах работы двс
- •19)Эффективная мощность и эффективный кпд двигателя
- •20)Кинематика и динамика кшм.Кинематика центрального кривошипно-шатунного механизма.
- •21 Порядок работы многоцилиндрового двигателя
- •22 Силы и моменты, действующие в кмш одноцилиндрового двигателя
- •23 Процессы газообмена в карбюраторном двс. Показатели процесса выпуска.
- •24 Уравновешивание двигателя. Внутренняя и внешняя неуравновешенность .
- •25 Процессы газообмена в дизельном двигатели. Показатели процесса выпуска.
- •26 Понятие о уравновешенности двигателя. Условия полной уравновешенности двигателя.
- •27 Показатели процесса впуска
- •28 Уравновешивание многоцилиндрового двигателя. Порядок работы.
- •29 Процессы газообмена в карбюраторном двс. Показатели процесса впуска.
- •30 Тепловой баланс двигателя. Уравнение внешнего теплового баланса двигателя и его анализ.
- •41 Параметры двс, характеризующие его конструктивные особенности.
- •42 Смесеобразование в дизельном двс . Объёмно-пленочное смесеобразование.
- •43 Мощностные параметры двс
- •44 Пленочное смесеобразование в дизелях. Конструкция камеры сгорания.
- •45 Весовые параметры двс46. Предкамерное смесеобразование
- •47. Процесс сжатия в двс. Показатели процесса и их определения
- •48. Регулирование двигателей. Назначение и классификация регуляторов
- •49. Теплообмен в процессе сжатия. Политропа сжатия и определение ее численного значения
- •50. Регулирование дизельного двигателя. Механические центробежные регуляторы.
21 Порядок работы многоцилиндрового двигателя
Порядок работы многоцилиндрового двигателя
зависит от типа двигателя (расположения цилиндров) и от количества цилиндров в нем.
Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени). Для определения этого угла продолжительность цикла, выраженную в градусах поворота коленчатого вала, делят на число цилиндров. Например, в четырехцилиндровом четырехтактном двигателе такт расширения (рабочий ход) происходит через 180° (720 : 4) по отношению к предыдущему, т. е. через половину оборота коленчатого вала. Другие такты этого двигателя чередуются также через 180°. Поэтому шатунные шейки коленчатого вала у четырех цилиндровых двигателей расположены под углом 180° одна к другой, т. е. лежат в одной плоскости. Шатунные шейки первого и четвертого цилиндров направлены в одну сторону, а шатунные шейки второго и третьего цилиндров — в противоположную сторону. Такая форма коленчатого вала обеспечивает равномерное чередование рабочих ходов и хорошую уравновешенность двигателя, так как все поршни одновременно приходят в крайнее положение (два поршня вниз и два вверх).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных тракторных двигателей 1—3—4—2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
При выборе порядка работы двигателя конструкторы стремятся равномернее распределить нагрузку на коленчатый вал.
Одноименные такты у четырехтактного шестицилиндрового двигателя совершаются через поворот коленчатого вала на 120°. Поэтому шатунные шейки расположены попарно в трех плоскостях под углом 120°. У четырехтактного восьмицилиндрового двигателя одноименные такты происходят через 90° поворота коленчатого вала и его шатунные шейки расположены крестообразно под углом 90° одна к другой.
В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов, что способствует его равномерному вращению.
Порядок работы восьмицилиндровых четырехтактных двигателей 1— 5—4—2—6—3—7—8, а шестицилиндровых 1—4—2—5—3—6.
Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопроводы к форсункам и отрегулировать клапаны.
22 Силы и моменты, действующие в кмш одноцилиндрового двигателя
При такте «сгорание—расширение» сила Р1, приложенная к поршневому пальцу, слагается из двух сил:
силы P давления газов на поршень
силы инерции Pи (сила инерции переменна по величине и направлению)
Суммарную
силу P1 разложить на можно две силы: силу
S, направленную вдоль оси шатуна, и силу
N, прижимающую поршень к стенкам цилиндра.
Силу S перенесем в центр шатунной шейки, а к центру коленчатого вала приложим две равные силе S и параллельные ей силы S1 и S2. Тогда совместное действие сил S1 и S создаст (на плече R) крутящий момент, приводящий во вращение коленчатый вал, а сила S2 нагрузит коренные подшипники и через них будет передаваться на картер двигателя.
Разложим силу S2 на две перпендикулярно направленные силы N1 и Р2. Сила N1 численно равна силе N, но направлена в противоположную сторону; совместное действие сил N и N1 образует момент Nl, который стремится опрокинуть двигатель в сторону, обратную вращению коленчатого вала. Сила P2 численно равная силе Р1, действует вниз, а сила Р действует на головку цилиндра вверх, т.е. в противоположную сторону. Разность между силами Р и P1 представляет собой силу инерции поступательно движущихся масс Ри. Наибольшей величины эта сила достигает в момент изменения направления движения поршня.
Вращающиеся массы шатунной шейки, щек кривошипа и нижней части шатуна создают центробежную силу Рц, направленную по радиусу кривошипа в от сторону центра вращения.
Таким образом, в кривошипно-шатунном механизме одноцилиндрового двигателя, кроме крутящего момента, возникающего на коленчатом валу, действует ряд неуравновешенных моментов и сил, как то:
реактивный, или опрокидывающий, момент Nl, воспринимаемый опорами двигателя через картер
сила инерции поступательно движущихся масс Ри, направленная по оси цилиндра
центробежная сила вращающихся масс Рц, направленная по кривошипу вала
Боковая сила N достигает наибольшей величины при расширении газов, когда поршень прижимается к левой стенке цилиндра, чем и объясняется ее обычно больший износ.
