Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
209_136_208_191_208_190_209_128_209_13.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.3 Mб
Скачать

38 Основные меры защиты от статического электричества на производстве.

1. заземление Rз≤100 Ом

2. уменьшение удельных объемных и поверхностных сопротивлений

3. уменьшение интенсивности электризации

4. применение нейтрализаторов статического электричества

Основными мерами защиты от статического электричества являются заземление металлических частей оборудования, которые могут быть электризованы, нанесение на поверхность сплошных или несплошных проводящих покрытий (пленок), применение токопроводящих полов и обуви, обеспечение утечки генерируемого заряда на заземленные части за счет увлажнения окружающей атмосферы, изменение режима технологического процесса, применение нейтрализаторов (индукционных, высоковольтных, радиоактивных).

Допустимые уровни напряженности электростатических полей установлены в ГОСТ 12.1.045-84. «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля». Допустимые уровни напряженности полей зависят от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей равен 60 кВ/м в 1 ч. Применение средств защиты работающих обязательно в тех случаях, когда фактические уровни напряженности электростатических полей на рабочих местах превышают 60 кВ/м.

При выборе средств защиты от статического электричества должны учитываться особенности технологических процессов, физико-химические свойства обрабатываемого материала, микроклимат помещений и др., что определяет дифференцированный подход при разработке защитных мероприятий.

Защита от статического электричества осуществляется двумя путями: * уменьшением интенсивности образования электрических зарядов; * устранением образовавшихся зарядов статического электричества.

Уменьшение интенсивности образования электрических зарядов достигается за счет снижения скорости и силы трения, различия в диэлектрических свойствах материалов и повышения их электропроводимости. Уменьшение силы трения достигается смазкой, снижением шероховатости и площади контакта взаимодействующих поверхностей. Скорости трения ограничивают за счет снижения скоростей обработки и транспортировки материалов.

Так как заряды статического электричества образуются при плескании, распылении и разбрызгивании диэлектрических жидкостей, желательно эти процессы устранять или, по крайней мере, их ограничивать. Например, «наполнение диэлектрическими жидкостями резервуаров свободно падающей струёй не допускается. Сливной шланг необходимо опустить под уровень жидкости или, в крайнем случае, струю направить вдоль стенки, чтобы не было брызг».

Поскольку интенсивность образования зарядов тем выше, чем меньше электропроводность материала, то желательно применять по возможности материалы с большей электропроводностью или повышать их электропроводность путем введения электропроводных (антистатических) присадок. Так, для покрытия полов нужно использовать антистатический линолеум, желательно периодически проводить антистатическую обработку ковров, ковровых материалов, синтетических тканей и материалов с использованием препаратов бытовой химии.

Соприкасающиеся предметы и вещества предпочтительнее изготовлять из одного и того же материала, так как в этом случае не будет происходить контактной электролизации. Например, полиэтиленовый порошок желательно хранить в полиэтиленовых бочках, а пересыпать и транспортировать по полиэтиленовым шлангам и трубопроводам. Если сделать это не представляется возможным, то применяют материалы, близкие по своим диэлектрическим свойствам. Например, электризация в паре фторопласт-полиэтилен меньше, нежели в паре фторопласт-эбонит.

Таким образом, для защиты от статического электричества необходимо применять слабоэлектризующиеся или неэлектризующиеся материалы, устранять или ограничивать трение, распыление, разбрызгивание, плескание диэлектрических жидкостей.

«Устранение зарядов статического электричества достигается прежде всего заземлением корпусов оборудования. Заземление для отвода статического электричества можно объединять с защитным заземлением электрооборудования. Если заземление используется только для снятия статического электричества, то его электрическое сопротивление может быть существенно больше, чем для защитного сопротивления электрооборудования (до 100 Ом). Еще один распространенный метод устранения электростатических зарядов - ионизация воздуха. Образующиеся при работе ионизатора ионы нейтрализуют заряды статического электричества. Таким образом, бытовые ионизаторы воздуха не только улучшают аэроионный состав воздушной среды в помещении, но и устраняют электростатические заряды, образующиеся в сухой воздушной среде на коврах, ковровых синтетических покрытиях, одежде. На производстве используют специальные мощные ионизаторы воздуха различных конструкций, но наиболее распространены электрические ионизаторы. Нейтрализаторы статического электричества

Эффективным способом снижения электризации на производстве являются применение нейтрализаторов статического электричества, создающие вблизи наэлектризованного диэлектрического объекта положительные и отрицательные ионы. Ионы, несущие заряд, противоположенный заряду диэлектрика, притягиваются к нему, нейтрализуя заряд объекта.

По принципу действия нейтрализаторы разделяют на следующие типы: - Коронного разряда (индукционные и высоковольтные). Индукционные нейтрализаторы состоят из несущей конструкции, на кот. укреплены заземленные иглы. Под действием электрического поля, образованного зарядами наэлектризованного материала, около острия игл возникает ударная ионизация воздуха. Просты и дешевы в изготовлении, но применимы в тех случаях когда иглы можно приблизить к наэлектризованному материалу достаточно близко (на 20 мм и менее). Кроме того они не ликвидируют заряд полностью. В высоковольтных нейтрализаторах коронный разряд образуется под действием высокого напряжения, получаемого от специального источника питания. Напряжение может быть постоянным, переменным промышленной и высокой частоты. Они высокоэффективны и их работа не зависит от величины заряда на материале. Дальность действия от 35мм до 600мм.

- Радиоизотопные. Применяют во взрывоопасных помещениях. Действие их основано на ионизации воздуха α-излучением плутония 239 и бета излучением прометия 147. недостаток: сравнительно небольшая сила ионизационного тока(0,6*10-5А/м).для устранения недостатка их совмещают с индукционными в одном устройстве – комбинированный нейтрализатор. - Аэродинамический. Камера, в кот. с помощью ионизирующего излучения или коронного разряда генерируются ионы, кот. затем воздушным потоком подаются к месту образования зарядов статического электричества. устройства обладают большим радиусом действия и при соответствующем конструктивном исполнении применимы во взрывоопасных производствах. Воздействие электрического роля на человека связано с протеканием через него слабого тока(нескольких микроампер).При этом электротавм никогда не наблюдается. Однако вследствие рефлекторной реакции та ток возможна механическая травма при ударе о рядом расположенные элементы конструкции, падение с высоты.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]