
- •1.1. Основные понятия и требования к машинам
- •1.2. Классификация и индексация строительных машин
- •1.3. Трансмиссии
- •А) Уклон 1:100
- •1.4. Специальные узлы и детали строительных машин
- •1.4.1. Канаты, блоки, барабаны, полиспасты
- •1.4.2. Остановы и тормоза
- •1.5. Силовое оборудование
- •1.6. Ходовое оборудование
- •1.7. Системы управления
- •1.8. Основные технико-эксплуатационные показатели строительных машин
- •Глава 2 транспортные, транспортирующие и погрузочно-разгрузочные машины
- •2.1. Грузовые автомобили, тракторы, пневмоколесные тягачи
- •2.2. Специализированные транспортные средства
- •4 Строительные машины и основы автоиаттацип
- •2.3. Ленточные строительные конвейеры
- •2.4. Погрузочно-разгрузочные машины
- •.Глава 3 грузоподъемные машины
- •3.5 Козловые краны
- •Грузоподъемность современных козловых кранов составляет от 3 до 200 т, высота подъема крюка — до 52 м, пролет — до 75 м, длина консоли — до 12 м.Глава 4 машины для земляных работ
- •4.1. Взаимодействие рабочих органов машин
- •4.2. Машины для подготовительных работ
- •Р н с. 4.4. Насосы: а — диафрагмовый; б — центробежный самовсасывающий
- •4.3. Землеройно-транспортные машины
- •4.3.1. Бульдозеры
- •4.3.2. Скреперы
- •4.3.3. Самоходные грейдеры (автогрейдеры)
- •4.4.1. Одноковшовые строительные экскаваторы
- •Р и с. 4.32. Принципиальная схема экскаватора с телескопическим рабочим оборудованием
- •4.4.2. Траншейные экскаваторы
- •4.5. Машины для разработки мерзлых и прочных грунтов, разрушения дорожных покрытий и строительных конструкций
- •Р и с. 4.43. Дисковая шелерезная машина
- •Р и с. 4.44. Землеройно-фрезерная машина
- •4.6. Машины для бестраншейной прокладки коммуникаций
- •Скважин
- •4.7. Бурильно-крановые машины
- •4.8. Машины для уплотнения грунтов, дорожных оснований и покрытий
- •.Глава 5 оборудование для свайных работ
- •5.1. Свайные молоты
- •5.2. Вибропогружатели, вибромолоты и шпунтовыдергиватели
- •5.3. Копры и самоходные копровые установки
- •5.4. Машины и оборудование для устройства буронабивных свай
- •Глава 6 машины для производства бетонных работ
- •6.1. Машины для приготовления бетонных и растворных смесей
- •Р и с. 6.4. Принципиальная схема циклического роторного бетоносмесителя
- •Р и с. 6.5. Кинематическая схема роторного бетоносмесителя с объемом готового замеса j 65 л
- •6.2. Машины и оборудование для транспортирования бетонных и растворных смесей
- •Ри с. 6.13. Кинематическая схема автобетоносмесителя
- •Р и с. 6.15. Роторно-шланговый бетононасос
- •6.3. Машины для укладки и уплотнения бетонных смесей
- •Машины для отделочных работ
- •7.1. Машины для штукатурных работ
- •7.1.1. Растворонасосы
- •Р и с. 7.1. Принципиальная схема диафрагменного насоса
- •Д [ффереициальиого поршневого растворонасоса
- •7.1.2. Штукатурные форсунки
- •7.1.3. Штукатурные агрегаты, машины и установки
- •7.1.4. Штукатурные станции
- •7.1.5. Ручные штукатурно-затирочные машины
- •7.2. Машины для малярных работ
- •7.2.1. Окрасочные агрегаты пневматического распыления
- •7.2.2. Окрасочные агрегаты низкого давления
- •7.2.3. Окрасочные агрегаты высокого давления
- •7.2.4. Агрегат для окраски фасадов зданий
- •7.2.5. Передвижные малярные агрегаты на базе винтовых насосов
- •7.2.6. Малярные станции
- •Р и с. 7.22. Малогабаритный малярный агрегат
- •Р и с. 7.23. Схема передвижной малярной станции
- •Глава 2 45
- •Глава 6 114
- •7.2. Машины для малярных работ 181
- •7.3. Машины для устройства и отделки полов 209
- •7.4. Машины для кровельных работ 230
- •8.1. Электрические ручные машины 242
- •Глава 11 10
- •7.3. Машины для устройства и отделки полов
- •7.3.1. Машины для отделки дощатых и паркетных полов
- •7.3.2. Машины для устройства полов из рулонных и плиточных материалов
- •7.3.3. Машины для устройства и отделки монолитных покрытий полов
- •Р и с. 7.33. Вакуумный комплекс для устройства монолитных бетонных полов
- •7.4. Машины для кровельных работ
- •7.4.1. Машины для устройства рулонной кровли
- •Р и с. 7.38. Принципиальная схема кровельной установки для укладки и наклейки наплавленного рубероида безогневым способом
- •7.4.2. Машины для устройства безрулонной кровли
- •8.1. Электрические ручные машины
- •8.1.1. Электрические сверлильные машины
- •8.1.2. Электрические шлифовальные машины
- •8.1.3. Электрические резьбозавертывающие машины
- •8.1.4. Электрические ножницы
- •8.1.5. Электрические машины ударного и ударно-вращательного действия
- •8.1.6. Электрические машины для обработки древесины
- •8.1.7. Электрические ручные герметизаторы
- •8.2. Пневматические ручные машины
- •8.2.1. Пневматические машины вращательного действия
- •8.2.2. Пневматические машины ударного действия
- •8.3. Ручные машины с пиротехническим приводом
- •9.1. Машины для летней уборки дорог
- •9.2. Машины для зимней уборки дорог
- •6 5 4 3 2 Рис. 9.10. Фрезерио-роториый снегоочиститель
- •9.3. Машины для ремонта дорог
- •10.1. Общие положения
- •10.2. Классификация систем автоматики
- •10.3. Элементы систем автоматики
- •10.3.1. Классификация средств автоматизации
- •10.3.2. Датчики контроля и регулирования
- •К вращающемуся устройству строительной машины
- •10.3.3. Усилители и переключатели
- •10.3.4. Микропроцессоры и микро-эвм в системах автоматического управления
- •10.3.5. Исполнительные устройства
- •10.4. Автоматизация работы строительных
- •10.4.1. Общее состояние автоматизации
- •10.4.4. Автоматизация автогрейдеров
- •10.4.5. Автоматизация скреперов
- •10.4.8. Автоматизация свайных работ
- •10.4.9. Автоматизация проходки тоннелей
- •10.4.10. Автоматизация катков и контроль качества уплотняемых дорожно-строительных материалов
- •10.4.11. Автоматизация грузоподъемных машин
- •10.4.12. Автоматизация машин для приклеивания и сварки рулонных материалов
- •Глава 11 общие сведения по эксплуатации и ремонту строительных машин
- •11.1. Основные положения системы технического обслуживания и ремонта строительных машин
- •11.2. Организация технического обслуживания и ремонта строительных машин
- •Глава 2 45
- •Глава 6 114
- •7.2. Машины для малярных работ 181
- •7.3. Машины для устройства и отделки полов 209
- •7.4. Машины для кровельных работ 230
- •8.1. Электрические ручные машины 242
- •Глава 11 10
- •Строительные машины и основы автоматизации
1.3. Трансмиссии
Трансмиссия представляет собой систему механизмов для передачи энергии от двигателя к исполнительным органам машины с изменением скоростей, крутящих моментов, направления и вида движения. В зависимости от способа передачи энергии их делят на механические, электрические, гидравлические и пневматические. В рассматриваемых ниже механических передачах наиболее распространенными являются передачи вращательного движения, одни из которых используют трение (фрикционные и ременные), а другие — зацепление (зубчатые, червячные, цепные и винтовые). В каждой передаче вал, передающий мощность, называется ведущим (входным), а воспринимающий ее — ведомым (выходным).
Основными параметрами передач являются мощность на ведущем Р1 и на ведомом Pi валах (в Вт), а также быстроходность, характеризующаяся угловой скоростью vvi или частотой вращения ведущего н\ и ведомого н'2 и т валов (в рад/с и с1), где н> = ял/30. Так как при передаче мощности от ведущего вала к ведомому происходят ее потери на трение в движущихся частях, то Р\>Рг. Величина этих потерь характеризуется КПД передачи
Л = ft/Pi < 1.
Общий КПД системы передач определяется как произведение КПД отдельных передач:
Лобщ=Г11Л2г13---г1»-
Передачи могут выполняться с постоянным и переменным (регулируемым) передаточным числом и, определяемым как соотношение частот вращения одного вала к другому. Различают понижающие (редукторные) передачи, у которых и>\ и п\>пг и повышающие (мультипликаторные), у которых и<\ и п\<т. В строительных машинах преимущественное распространение получили понижающие передачи, у которых
и-п\1п2.
Передаточное число системы передач определяется как произведение передаточных чисел передач ее составляющих, т.е.
и0бщ= и\ иг из... ип.
Между различными параметрами передач существуют следующие соотношения: мощность Р (Вт) можно выразить через окружное усилие F (Н) элемента передачи и его окружную скорость v (м/с):
P=Fv при v-nnD;
крутящий момент МкР (Нм) можно выразить через мощность Р (Вт) и частоту вращения л(с-'):
Мкр=Р/п.
Крутящие моменты на ведущем Мкр\ и ведомом МКр2 валах передачи связаны зависимостью
Мкр2=Мкр1«.
Фрикционные передачи работают за счет сил трения, возникающих в месте контакта цилиндрических, конических и клиновых катков (рис. 1.1), при их взаимном прижатии друг к другу с усилием Q. Величина силы трения между катками F—Qf, где/— коэффициент трения. Рабочие поверхности фрикционных катков изготовляют и
з
различных материалов, применяемых в сочетании сталь по стали, пластмассе, коже, прессованному асбесту или прорезиненной ткани, чугун по коже и т.п. Передаточное число фрикционной передачи без учета проскальзывания катков u-DilDx, где D\ и Di — диаметры катков. В силовых передачах м<10. Фрикционную передачу с переменным передаточным числом называют вариатором. По конструкции вариаторы разделяют на лобовые, конусные, шаровые, торо- вые, многодисковые и клиноременные.
Фрикционные передачи просты по конструкции, обеспечивают плавность и бесшумность работы, безударное включение на ходу, бесступенчатое регулирование передаточного числа и реверсивность движения. Основные их недостатки — проскальзывание катков и ограниченный диапазон передаваемых мощностей (до 20 кВт).
шт |
тщ |
||
|
-i- |
|
Рис. 1.2. Ременные передачи
сечения ремня различают плоскоременные (рис. 1.2, б), клиноремен- ные (рис. 1.2, в), поликлиновые (рис. 1.2, г) и круглоременные (рис. 1.2, <)) передачи. К ременным передачам условно относят передачи с зубчатыми ремнями (рис. 1.2, е), работающие по принципу зацепления. Плоский ремень таких передач имеет на внутренней поверхности зубья трапецеидальной формы, входящие в зацепление со впадинами на шкиве.
По применяемому материалу стандартные плоские ремни бывают прорезиненные тканевые, полиамидные, кожаные, хлопчатобумажные и шерстяные, круглые — хлопчатобумажные и капроновые, а клиновые — кордтканевые и кордшнуровые. Шкивы передач изготовляют литыми из чугуна, стали и легких сплавов.
Наибольшее распространение в строительных машинах получили клиноременные передачи, обеспечивающие передачу больших мощностей при сравнительно малых межосевых расстояниях и больших передаточных числах. В таких передачах используют один или несколько (но не более восьми) ремней. Оптимальное расстояние между осями шкивов а составляет для плоскоременных передач amin > 2(D\ + Di), для клиноременных передач атт = 0,55(D| + Di) + Н, где D\ и Di — диаметры шкивов; Н— высота сечения ремня.
Передаточное число ременных передач не является строго постоянным (за счет проскальзывания ремня) и определяется по формуле
u~DilD\.
Для плоскоременных передач м<5, клиноременных м<10. Окружное (тяговое) усилие передачи
F-Fi~F\,
где F\ hFi — соответственно натяжения в сбегающей и набегающей ветвях ремня,
F2=FieM,
где е=2,718 — основание натурального логарифма;/ — коэффициент трения между ремнем и шкивом; ai — угол обхвата ремнем ведущего шкива; a > 150° — для плоскоременных передач и a > 120° — для клиноременных.
Необходимое натяжение ремня (ремней) в процессе работы обеспечивается регулируемыми и автоматически действующими натяжными устройствами.
Клиновые ремни выпускают семи различных типов (0, А, Б, В, Г, Д, Е), каждый из которых может передавать определенную мощность. Расчет клиноременной передачи сводится к выбору ремня и определению необходимого их количества в зависимости от передаваемой мощности Р (кВт).
z = P/Pp,
где Pp — расчетная мощность, передаваемая одним ремнем, кВт; Рр = Рокакр, Ро — мощность, передаваемая одним ремнем (по ГОСТу), кВт; ка — коэффициент, учитывающий влияние угла обхвата ремнем малого шкива, ка - 0,52... 1 для ai = 120... 180°; кр — коэффициент, учитывающий режим работы передачи, fcp=0,7...1.
Достоинства ременных передач — простота конструкции и эксплуатации, небольшая стоимость, плавность и бесшумность работы, предохранение механизмов от перегрузки за счет проскальзывания ремня. Основной недостаток — непостоянство передаточного числа.
Зубчатые передачи в общем случае состоят из двух зубчатых колес, находящихся в зацеплении. Ведущее, обычно меньшее колесо, называется шестерней, а ведомое большое — колесом. По взаимному расположению колес зубчатые передачи подразделяют на передачи с внешним (рис. 1.3, а, в—з) и внутренним (рис. 1.3, 6) зацеплением.
По расположению геометрических осей валов, на которых установлены зубчатые колеса, различают передачи: с параллельными осями — цилиндрические зубчатые колеса внешнего или внутреннего зацепления (рис. 1.3, а—г), с пересекающимися осями — кониче-
Р и с. 1.3. Зубчатые передачи
скис зубчатые колеса (рис. 1.3, f), е), с перекрещивающимися осями — цилиндрические винтовые (рис. 1.3, з). конические гипоидные (рис. 1.3, ж) и червячные (см. рис. 1.6).
По расположению зубьев на колесах передачи бывают прямозубые (рис. 1.3, а, б. t)), косозубыс (рис. 1.3, в, е), с круговыми зубьями (рис. 1.3, ж) и шевронные (рис. 1.3, г).
В строительных машинах наиболее широко применяют цилиндрические зубчатые передачи. По сравнению с ременными зубчатые передачи способны передавать большие мощности, обеспечивают точность, постоянство и большие величины передаточного числа, имеют малые габариты, обладают более высокими КПД. долговечностью, надежностью и простотой в эксплуатации.
Рассмотрим геометрию зубчатого зацепления прямозубых цилиндрических колес (рис. 1.4). Боковые эвольвентные профили зубьев колес касаются в точке Р, называемой полюсом зацепления. Эта точка делит линию центров 0\0г в отношении, равном передаточному числу и. Окружности диаметрами d\ и di, касающиеся в точке Р. называют делительными и выбирают в качестве базы для определения основных размеров зубчатых колес. Делительная окружность делит зуб по высоте на две части — головку и ножку. Окружность диаметром А. отсекающую на ножке зуба точку, от которой начинается построение эвольвентного Рис. 1.4, Схема зацепления профиля, называют основной. Каса- прямозубых цилиндрических колес тельная к основньш окружностям
шестерни и колеса представляет собой геометрическое место точек касания профилей двух соприкасающихся зубьев и называется линией зацепления. Угол а между линией зацепления и перпендикуляром к линии центров колес называют углом зацепления.
ба, мм; S — толщина зуба по делительной окружности, мм; d-mz — диаметр делительной окружности, мм; da-d+2ha- m(z + 2) — диаметр окружности выступов, мм; df-d-2hf-m(z-2,b) — диаметр окружности впадин, мм; а„ = m(z 1 + гг)12 — межосевое расстояние колес, мм; 6=(6-н10)т — ширина рабочей части колес, мм.
Передачи, включающие в себя зубчатые цилиндрические колеса с перемещающимися осями, называют планетарными (рис. 1.5). Такая передача состоит из центральной (солнечной) шестерни а с наружными зубьями, зубчатого венца Ъ с внутренними зубьями и водила Н, на котором укреплены оси сателлитов (зубчатых колес) g. Вращаясь вокруг своих осей и вместе с осью вокруг солнечной шестерни, сателлиты совершают планетарное движение.
В большинстве случаев зубчатый венец Ъ выполняется неподвижным, а водило Н— подвижным; при этом движение может передаваться отакЯи наоборот. Передаточное число планетарной передачи: шестерня а — ведущая, иьаН- па1пн - 1 + zblza~, водило Н — ведущее, иьНа = пн/па - 1 + zjzb. Если в такой передаче все зубчатые колеса и водила будут подвижными, то такую передачу называют дифференциальной или дифференциалом.
Планетарные передачи все шире применяют в конструкциях современных строительных машин благодаря компактности, малой массе и возможности использования их как редукторов с большими постоянным и переменным (коробки передач) передаточными числами. Они применяются в ходовых и поворотных устройствах стреловых самоходных и башенных кранов, одноковшовых экскаваторов, приводах ленточных конвейеров и ручных машин.
Рис.
1.5. Планетарная передача
специальных подшипников для ее воспринятия. В передачах с шевронными зубьями (см. рис. 1.3, г) осевые силы взаимно уничтожаются. Такие передачи характеризуются высокой нагрузочной способностью.
Конические зубчатые передачи (см. рис. 1.3, д, е, ж) применяют при необходимости расположения валов под углом (чаще всего 90°). Они сложнее цилиндрических и требуют высокой точности изготовления и монтажа. Валы таких передач нагружены значительными осевыми, усилиями. Конические передачи выполняют с прямыми, косыми и круговыми зубьями. Последние два типа зубьев обеспечивают повышенную плавность работы и нагрузочную способность передач.
Червячные передачи (рис. 1.6, а) передают вращение между близкорасположенными перекрещивающимися (чаще всего под углом 90°) валами. Движение в червячных передачах осуществляется по принципу винтовой пары. Винтом является червяк 1, в зацеплении с которым находится червячное колесо 2, подобное сектору, вырезанному из длинной гайки и изогнутому по окружности. Резьба червяка может быть однозаходной и многозаходной, правой и левой. Наиболее распространена правая резьба с числом заходов п = 1, 2, 4. Число зубьев червячного колеса гг 28. Передаточное число червячной пары u-zilz\. По форме поверхности, на которой образуется резьба, различают цилиндрические (рис. 1.6, б) и глобоидные (рис. 1.6, в) червяки. Форма профиля резьбы червяка может быть прямолинейной (трапецеидальной) и криволинейной (эвольвент- ной).
Рис.
1.6. Червячная передача
как вращение не может передаваться от колеса к червяку, а в этом заключается свойство самоторможения червячной передачи, то их широко применяют в стрелоподъем- ных, поворотных и ходовых механизмах строительных машин. К недостаткам относятся пониженный КПД, возможность заедания при рабо
те и необходимость применения дорогих антифрикционных материалов.
Редуктором называется механизм, предназначенный для уменьшения частоты вращения выходного вала по сравнению с входным, увеличения крутящего момента и состоящий из одной или нескольких механических передач, помещенных в общем закрытом корпусе. Общее передаточное число редуктора м0бЩ = ив/ит, где т и ит — соответственно частоты вращения быстроходного Б (входного) и тихоходного Г (выходного) валов, с-'.
По числу передач, входящих в редуктор, различают одно-, двух- и многоступенчатые редукторы. Одноступенчатые цилиндрические редукторы (рис. 1.7, а) позволяют получать передаточные числа м<10, двухступенчатые (рис. 1.7, б—г) — м<60, трехступенчатые (рис. 1.7, д) — и > 60, одноступенчатые конические редукторы (рис. 1.7, е) — ы<6,3, одноступенчатые червячные (рис. 1.7, ж) — и > 30. Для получения больших передаточных чисел и передачи движения между пересекающимися быстроходным и тихоходным валами применяют комбинированные редукторы, включающие различные виды передач — коническо-цилиндрические (рис. 1.7, з), червячно-зубчатые (рис. 1.7, и), планетарные и др.
В механических трансмиссиях
строительных машин широко используют
зубчатые редукторы с переменным
передаточным числом (коробки перемены
передач), позволяющие ступенчато
изменять скорость и крутящий момент
выходного вала и направление его
6)
Ю
ггБ
-f
III ч
1*1
*м ч"—±~Г
а
д)
it
f
jj,1
I
*
I у7П
I
X | x/<| |~x
I \M\
на
Т
"п
]п
IV |х | i |
IVI I х
ill
*
T-J- п
-di. • ...»
№
i) -T-6
.1 I; I ; ПП
t^t
&
Рис. 1.7. Кинематические схемы редукторов
вращения. Простейшая коробка перемены передач показана на рис. 1.8. Изменение частоты вращения выходного (вторичного)вала 4 осуществляется перемещением сдвоенных шестерен 5 и 6 вправо или влево, до зацепления их с шестернями 2 или 3 на входном (первичном) валу 1. Попеременное включение в работу двух пар шестерен с различным передаточным числом обеспечивает вращение выходного вала с двумя частотами т и /п.
э-
ШБ
=ю
-Е
пг
4
Рис.
1.Х Схема коробки передач
5) <56
Рис.
1.9. Цепные передачи
ворачивается ролик 5. через который происходит зацепление цепи с зубом звездочки. Втулочная цепь не имеет роликов. Роликовые и втулочные цепи применяют при скоростях до 20 м/с. Зубчатая цепь (рис. 1.9, в) состоит из набора шарнирно соединенных между собой пластин двух видов с двумя зубообразными выступами 9. торцевые поверхности которых зацепляются с зубьями звездочки, и направляющих 10 без зубьев. Зубчатые цепи отличаются плавностью работы и применяются при скоростях более 20 м/с. Многорядные цепи (рис. 1.9, г) позволяют передавать большие нагрузки. Каждая цепь характеризуется шагом р (мм), шириной В (мм) и разрушающей нагрузкой (Я). Оптимальное межцентровое расстояние цепной передачи (мм) составляет а - (30...50)/;. Передаточное число цепных передач и = zdz\ < 8. в тихоходных передачах допускается и <15. Скорость цепи (м/с):
v=Hzp/1000.
где ~ — число зубьев звездочки; п — частота вращения звездочки, с 1.
Со скоростью цепи связаны действующие на нес динамические нагрузки. Скорость цепных передач, применяемых в строительных машинах (грузовые, тяговые и приводные цепи), не превышает 10...15 м/с. По сравнению с ременными, цепные передачи способны передавать значительно большие нагрузки, обеспечивают постоянное передаточное число, надежно работают при малых межосевых расстояниях, уменьшают нагрузки на валы и опоры. Недостатки — высокая стоимость, шум при работе, небольшая долговечность.
Для преобразования вращательного движения в возвратно-по- ступательное и наоборот применяют реечный, винтовой, кривошип- но-ползунный, эксцентриковый и кулачковый механизмы.
Реечный механизм (рис. 1.10, а) состоит из цилиндрического зубчатого колеса и зубчатой рейки, находящихся в зацеплении друг с другом. Если ведущим элементом является колесо, то вращательное движение преобразуется в поступательное, если рейка — поступательное во вращательное. Этот механизм применяется в реечном домкрате, станках и др.
Винтовой механизм (рис. 1.10, и) состоит из сопряженных винта и гайки, каждый из которых может получать поступательное движение по трем различным схемам:
вращение неподвижной гайки позволяет поступательно перемещаться свободному винту в осевом направлении;
при вращении закрепленного винта внутри лишенной возможности вращения гайки последняя получит поступательное движение;
вращение винта относительно неподвижной гайки дает поступательное перемещение винту.
Применяется в винтовых домкратах, станках и др.
Кривошипно-поязунный механизм (рис. 1.10, г) состоит из кривошипа 1, шатуна 2, ползуна 3, неподвижной опоры 4 и может преобразовывать вращательное движение кривошипа в возвратно-поступательное ползуна (поршневой компрессор), а возвратно-поступательное движение ползуна во вращательное движение кривошипа (двигатели внутреннего сгорания).
но-поступательное движение. Такой механизм применяется в камнедробилках, прессах и др.
Кулачковый механизм (рис. 1.10, д) в общем случае состоит из опоры /, штанги 2 с роликом 3 на ее конце для перекатывания по вращающемуся (ведущему) кулачку 4. При вращении кулачка штанга совершает возвратно-поступательное движение и называется толкателем /. В случае вращательного движения штангу называют коромыслом II. Эти механизмы используют в двигателях, топливных насосах и др.
Оси, валы, подшипники, муфты. Оси и валы представляют собой стержни различных сечений, на которых устанавливаются вращающиеся детали. Их изготовляют из стального проката, поковок и штамповок, а в некоторых случаях из высокопрочного чугуна с дальнейшей обработкой на металлорежущих станках.
Оси предназначены для поддержания деталей и узлов, вращающихся вместе с ними или относительно их (ось блока, барабана, ходового колеса) (рис. 1.11, я).
Валы служат для передачи крутящего момента и вращаются вместе с закрепленными на них деталями (зубчатые колеса, шкивы, звездочки, маховики, барабаны и т.п.). Различают валы прямые (рис. 1.11, б), коленчатые (рис. 1.11, в) и гибкие (рис. 1.11, г). Наиболее распространены прямые валы, которые часто изготовляют заодно с червяком или зубчатой шестерней, если их диаметры примерно равны. Коленчатые валы служат в основном для преоб-
Р
и с. 1.11. Оси и валы
разования возвратно-поступательного движения во вращательное или наоборот (двигатели и насосы). Гибкие валы применяют для передачи вращения между узлами машин, меняющими свое относительное положение в процессе работы (вал вибратора, ручной машины и т.д.). Их изготовляют из нескольких слоев стальной проволоки разного диаметра, плотно намотанных на сердечник. При этом каждый слой имеет противоположное направление навивки, а направление навивки наружного слоя противоположно вращению вала при работе. Для предохранения вала от повреждений и удержания на нем смазки его закрывают специальным кожухом.
Оси и валы выполняют в основном круглыми сплошного или кольцевого поперечного сечения. Прямые валы и оси бывают постоянного диаметра по всей длине или ступенчатыми с различными диаметрами на отдельных участках. Ступенчатые валы и оЬи удобны для установки на них различных деталей, каждая из которых должна свободно перемещаться на свое место. Для соединения с деталями на осях и валах нарезают шпоночные канавки, шлицы, резьбу, а иногда выполняют и профильные сечения (см. рис. 1.15).
Участки осей и валов называют опорными (под подшипники), несущими и переходными. Опорные участки, воспринимающие радиальные нагрузки, называют цапфами, а осевые нагрузки — пятами (рис. 1.12, в). Концевые цапфы называют шипами (рис. 1.12, а), а промежуточные — шейками (рис. 1.12, б). По форме поверхности цапфы бывают цилиндрическими, коническими (рис. 1.12, г) и сферическими (рис. 1.12, д).
Оси и валы при расчете на прочность рассматривают как балку на двух опорах с приложенными к ней нагрузками.
Оси рассчитывают только на изгиб:
d=\J 10МК /[сги],
При действии на ось нагрузок в различных плоскостях определяют результирующий изгибающий момент
Ми^М;+М1в,
где Мг и Мв — изгибающие моменты в горизонтальной и вертикальной плоскостях.
Валы рассчитывают на совместное действие изгиба и кручения:
cHjlOM^KJ,
где d — диаметр вала, мм; Мпр — приведенный момент, Нм.
Мпр=^М2кр+М1
где МКр — крутящий момент в опасном сечении вала.
Для валов, работающих только на кручение,
</=з/5Мкр/[ткр],
где [ткр] — допускаемое напряжение на кручение ([тхР]=0,5[сти]).
Детали, составляющие машину, связаны между собой подвижными и неподвижными связями. Наличие подвижных связей, к которым относятся различного рода шарниры, подшипники и зацепления, определяется кинематической схемой машины. Неподвижные связи позволяют разбирать машину на узлы и детали, упростить изготовление машины, ее сборку, разборку, ремонт, транспортировку и т.д. Неподвижные связи называют соединениями и делят на неразъемные и разъемные. Неразъемные соединения (заклепочные, сварные, клеевые и т.п.) при разборке частично или полностью разрушаются и становятся непригодными для повторного использования. Разъемные соединения (резьбовые, клеммо- вые, клиновые, штифтовые, шпоночные, шлицевые и профильные) разбираются без разрушения скрепляющих элементов. Благодаря этому соединяющие и соединяемые детали могут применяться неоднократно.
Рассмотрим основные виды разъемных соединений деталей машин.
Шпоночные и зубчатые (шлицевые) соединения служат для скрепления вращающихся деталей (шкивов, зубчатых колес, барабанов, муфт и т.п.) на осях и валах и для передачи крутящего момента. Основным элементом шпоночного соединения является призматическая, сегментная или клиновая шпонка. Клиновые шпонки удержива-