- •Системні методи дослідження міжнародних відносин навчальний посібник
- •Передмова
- •Розділ і. Система та системність тема №1. Базові поняття системного аналізу
- •1.1. Історичний розвиток концепції системного підходу
- •1.2. Наукова база системного аналізу
- •1.3. Системні ресурси суспільства
- •1.4. Основні принципи та правила системного аналізу
- •1.5. Основні процедури системного аналізу
- •1.6. Загальна класифікація систем
- •1.7. Основні топологічні структури систем
- •Лінійні структури:
- •Ієрархічні (деревоподібні) структури:
- •Мережеві структури:
- •Матричні структури:
- •1.8. Цілі та задачі соціальних систем
- •1.9. Системний підхід в аналізі міжнародних відносин
- •Питання для самоконтролю
- •Типовий приклад
- •1. Прикладні параметри системи та її класифікація:
- •Індивідуальне завдання
- •Поради до виконання індивідуального завдання
- •Теми для обговорення
- •Зразок тестових завдань
- •1. В поведінці яких систем існує випадковість:
- •2. Яким структурам притаманні нерівноправні зв’язки:
- •3. Кількість підсистем в системі:
- •Основна література
- •Тема №2. Основні ознаки, Опис та моделювання систем
- •2.1. Еволюція, розвиток та функціонування системи
- •2.2. Функції і задачі керування системою
- •2.3. Моделювання систем
- •2.4. Морфологічний опис систем
- •2.5. Когнітивна структуризації систем
- •2.6. Синергетичний підхід опису систем
- •Питання для самоконтролю
- •Типовий приклад
- •1. Параметри системи та побудова моделі:
- •2. Відтворення когнітивних зв’язків в системі:
- •Індивідуальне завдання
- •Поради до виконання індивідуального завдання
- •Теми для обговорення
- •Зразок тестових завдань
- •1. Якщо в когнітивній карті вершини пов'язані дугою
- •3. Асимптотична стійкість системи це
- •Основна література
- •Розділ іі. Стохастичні процеси в соціальних системах тема №3. ВипадковІсть та імовірність
- •3.1. Базові поняття випадкової величини в системі
- •3.2. Випадкова подія та її імовірність
- •3.3. Імовірність як відносна частота появи події
- •3.4. Дерево-граф результатів імовірності події
- •3.5. Розрахунок імовірності складної події, що представлена у вигляді комбінації елементарних подій
- •3.6. Основні числові характеристики випадкових величин
- •3.7. Закони розподілу випадкових величин (параметрична статистика)
- •3.8. Шкала для оцінки показників системи (непараметрична статистика)
- •3.9. Поняття статистичної гіпотези
- •3.10. Метод перевірки узгодженості думок експертів
- •Питання для самоконтролю
- •Типовий приклад
- •1. Анкета:
- •2. Опитування:
- •3. Обробка результатів:
- •4. Висновки:
- •Індивідуальне завдання
- •Поради до виконання індивідуального завдання
- •Теми для обговорення
- •Зразок тестових завдань
- •1. Яка з наведених величин дискретна:
- •Основна література
- •Тема №4. Аналіз зв’язків в системі
- •4.1. Функціональна та статистична залежність
- •4.2. Аналіз взаємної спряженості випадкових величин
- •4.3. Коефіцієнти Пірсона та Чупрова
- •4.4. Коефіцієнт контингенції та асоціації
- •Питання для самоконтролю
- •Типовий приклад
- •1. Коефіцієнт Пірсона та Чупрова
- •2. Коефіцієнт контингенції та асоціації
- •Індивідуальне завдання
- •Поради до виконання індивідуального завдання
- •Теми для обговорення
- •Зразок тестових завдань
- •1. Системі міжнародних відносин притаманні:
- •2. Для величин х та у обраховані коефіцієнти взаємної спряженості. Яке з наступних стверджень вірне?
- •Основна література
- •Тема №5. Кореляційний аналіз
- •5.1. Кореляція випадкових величин та коефіцієнт кореляції
- •5.2. Дослідження залежностей кореляції від вибору шкали вимірювання
- •Питання для самоконтролю
- •Типовий приклад
- •1. Обидві змінні виміряні за кількісними шкалами (коефіцієнт кореляції Пірсона):
- •2.Обидві змінні вимірюються за ранговою шкалою (коефіцієнт рангової кореляції Спірмена):
- •3.Обидві змінні вимірюються за ранговою шкалою (коефіцієнт рангової кореляції Кендала):
- •4. Одна із змінних вимірюється за номінальною, а інша - за кількісною шкалою:
- •5. Обидві змінні вимірюються за номінальною шкалою:
- •Індивідуальне завдання
- •Поради до виконання індивідуального завдання
- •Теми для обговорення
- •Зразок тестових завдань
- •1. Які з наступних стверджень вірні:
- •Основна література
- •Тема №6. Регресійний та факторний аналіз
- •6.1. Метод лінійного регресійного аналізу
- •6.2. Загальна характеристика факторного аналізу
- •Інтерпретація факторів.
- •6.3. Центроідний метод л. Терстоуна
- •Питання для самоконтролю
- •Типовий приклад
- •1. Дискретні величини:
- •2.Неперервні величини:
- •2. Якщо редукційна матриця має вигляд:
- •Основна література
- •Розділ ііі. Організація інформації для керування системою тема №7. Функції інформаціЇ в системі
- •7.1. Класифікація інформації по різних ознаках
- •7.2. Базові поняття інформаційних рішень
- •7.3. Інформаційні ресурси соціальних систем
- •7.4. Документ, як інформаційний ресурс
- •7.5. Методи одержання та використання інформації
- •7.6. Міра, кількість та ентропія інформації в системі
- •7.7. Інформаційне керування системою
- •7.10. Загальна організація інструментарію пакетів прикладних програм
- •7.11. Електронні таблиці в системному аналізі даних
- •Питання для самоконтролю
- •Типовий приклад
- •1. Яка з величин є нормованою
- •2. Індуктивний підхід при побудові (виборі, адаптації) інформаційної системи це:
- •3. Яке з висловлень є істиною:
- •Основна література
- •Додаткова література
- •Навчальна програма нормативної дисципліни Системні методи дослідження міжнародних відносин модуль і. Система та системність
- •Робоча навчальна програма дисципліни Системні методи дослідження міжнародних відносин
- •Навчально - тематичний план лекцій і лабораторних занять
- •Змістовий модуль і. Система та системність
- •Тема 1. Основні методи та процедури системного аналізу в дослідженні систем
- •Тема 2. Опис та моделювання систем
- •Тема 4. Організація інформації для керування системою
- •Тема 5. Методи виміру та прогнозування стохастичних показників системи
- •Тема 6. Шкалювання випадкових величин. Перевірка статистичної гіпотези
- •Тема 7. Аналіз взаємозалежності
- •Тема 8. Кореляційний аналіз
- •Контрольні запитання до змістового модуля і.
- •Додаток 1:
1.7. Основні топологічні структури систем
Початкове дослідження системи полягає в розкладанні її на підсистеми та вивченні кожної підсистеми окремо і у взаємозв'язку з іншими, що дає інтегровану картину досліджуваної системи.
Структура - це сукупність зв'язків і відносин між частинами цілого.
Структура є зв‘язаною, якщо можливий обмін ресурсами між будь-якими двома підсистемами системи (передбачається, якщо є обмін i-тої підсистеми з j-тою підсистемою, то існує обмін j-тої підсистеми з i-тою).
Структури систем бувають різного типу, різної топології. До основних структур відносять:
Лінійні структури:
В лінійних структурах (рис. 1.1.) діють лише послідовні зв’язки, їх складність можна визначати за кількістю підсистем. У випадку лінійної структури ускладнення деякої підсистеми викличе ускладнення всієї системи. Математичний опис (модель) систем з лінійною структурою за звичай є лінійне рівняння. При коректному поєднанні двох лінійних структур, як правило утворюється нова лінійна структура.
Ієрархічні (деревоподібні) структури:
Ієрархія - це структура з наявністю підпорядкованості, тобто нерівноправних зв’язків між елементами, коли дія в одному напрямку спричиняє значно більший вплив на елемент, ніж дія в іншому напрямку. Існують різні види ієрархічних структур, але на практиці найчастіше застосовується деревоподібна. В деревоподібній структурі (рис. 1.2.) легко визначати ієрархічні рівні, це групи елементів рівновіддалених від верхнього (головного) елемента.
Складність ієрархічних структур можна визначати за числом рівнів ієрархії. Збільшення складності при цьому вимагає великих ресурсів для досягнення цілі. При коректному поєднанні двох ієрархічних структур, як правило, утворюється нова ієрархічна структура. Комбінація ієрархічної і лінійної структури може привести як до ієрархічної так і до складної невизначеної структури.
Мережеві структури:
В мережевих структурах (рис. 1.3.) діють як послідовні так і паралельні зв’язки. Їх складність можна визначати як максимальну зі складностей усіх лінійних структур, що відповідають відповідних різним стратегіям досягнення цілі (шляхів, що ведуть від початкової підсистеми до кінцевої). При коректному поєднанні двох мережевих структур, як правило, утворюється нова мережева структура.
Матричні структури:
В матричних структурах (рис.1.4.) складність можна визначати кількістю підсистем, а математичний опис (модель) таких систем, зазвичай, є система лінійних рівнянь.
При коректному поєднанні двох матричних структур, як правило, утворюється нова структура - просторова матриця (рис.1.5.). Такого виду структури часто використовуються в системах з тісно зв'язаними і рівноправними (“по вертикалі” і “по горизонталі”) структурними зв'язками.
Крім зазначених основних типів структур використовуються й інші, що утворюються за допомогою їхніх коректних комбінацій - з'єднань і вкладень. Якщо структура системи не визначена, то такі системи називаються неструктурованими.
1.8. Цілі та задачі соціальних систем
Всі елементи та підсистеми системи підпорядковані одній головній цілі, виконання якої є рушійною силою функціонування всієї системи. Взагалі система - це засіб досягнення цілі чи все те, що необхідно для досягнення цілі (елементи, відносини, структура, робота, ресурси) у деякій заданій множині об'єктів (операційному середовищі).
Ціль - найкращий стан системи, тобто стан, що дозволяє вирішувати проблему при даних ресурсах.
Цілеспрямоване поводження системи - поводження системи (послідовність прийнятих нею станів), що веде до досягнення цілі системи.
Ціль системи тісно пов’язана з її ефективністю.
Ефективність системи - здатність системи оптимізувати деякий критерій ефективності.
Як правило для досягнення цілі існує багато альтернатив, вибрати оптимальну з них є головною задачею дослідника.
Задача - опис можливих стратегій досягнення цілі системи чи можливих проміжних станів досліджуваного об'єкта.
Вирішити задачу - означає чітко визначити ресурси і шляхи досягнення зазначеної цілі при вихідних умовах.
Рішення задачі - опис того стану задачі, при якому досягається зазначена ціль; рішенням задачі називають і сам процес пошуку опису цього стану.
Якщо вхідні дані, ціль, умова задачі, чи рішення, можливо, навіть саме поняття рішення не визначено, чи погано формалізовані, то такі задачі називаються неформалізовані.
