Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ.rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
115.47 Кб
Скачать

2. Поясните, различаются ли понятия «организм» и «особь».

Живы́е органи́змы — главный предмет изучения в биологии. Для удобства рассмотрения все организмы распределяются по разным группам и категориям, что составлят биологическую систему их классификации.

Особь-отдельно существующий организм или отдельно взятый человек, как представитель человеческого рода; неделимая единица жизни на Земле (разделить особь на части без потери "индивидуальности" невозможно) . Особь — наименьшая единица данного биологического вида, подверженная действию факторов эволюции. Понятие особи в полной мере применимо лишь к неколониальным организмам.

3. Назовите основные свойства биосистемы "организм"

Организм – это самостоятельная биосистема, уровень организации живой материи. Организму, как биосистеме присущи проявления основных свойств живого. А именно:

1. Обмен веществ

2. Обмен энергии

3. Движение

4. Размножение

5. Раздражимость

6. Изменчивость

7. Развитие

8. Размножение

9. Целостность

10. Клеточное строение

11.Упорядоченность структур и функций

Все перечисленные особенности биосистемы можно обнаружить у организма, что указывает на то что она биосистема и организм.

6. Охарактеризуйте основные закономерности передачи наследственности у организмов.

Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

- скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

- был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

- было прослежено не только первое поколение, но и последующие по этому признаку.

Скрещивание, в котором родительские особи анализируется по одной альтернативной паре признаков, называется моногибридным, по двум - дигибридным, по трем и более - полигибридным.

Основные понятия генетики

В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными. Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется рецессивным.

Гены принято обозначать буквами латинского алфавита. Гены, относящиеся к одной аллельной паре, обозначают одной и той же буквой, но аллель доминантного состояния признака - прописной, а рецессивного - строчной. Так в зиготе и в соматических клетках всегда два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двумя буквами.

АА – особь, гомозиготная по доминантному признаку

аа – особь, гомозиготная по рецессивному признаку

Аа – особь гетерозиготная

Рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный – как в гомозиготном, так и в гетерозиготном состоянии.

Совокупность всех генов в организме называется генотип. Совокупность всех признаков и свойств организма называется фенотип. Фенотип зависит от генотипа и от факторов окружающей среды.

8. Почему третий закон Менделя не всегда соблюдается при наследовании признаков?

Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие признаки, сцеплены, то есть располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки должны быть выбраны для его дигибрибных экспериментов – он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы совсем иными, так как сцепленные признаки наследуются независимо друг от друга.

Законы Менделя в их классической форме действуют при наличии определенных условий:

1) гомозиготность исходных скрещиваемых форм;

2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении) ;

3) одинаковая жизнеспособность зигот всех типов.

Нарушение этих условий может привести либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении, либо к искажению соотношений различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом.

10. Назовите основные типы сцепления генов.

Сцепление генов, расположенных в одной хромосоме, может быть полным и неполным. Полное сцепление генов, т. е. совместное наследование, возможно при отсутствии процесса кроссинговера. Это характерно для генов половых хромосом, гетерогаметных по половым хромосомам организмов (ХУ, ХО), а также л для генов, расположенных рядом с центромерой хромосомы, где кроссинговер практически никогда не происходит.

В большинстве случаев гены, локализованные в одной хромосоме, сцеплены не полностью, и в профазе I мейоза происходит обмен идентичными участками между гомологичными хромосомами. В результате кроссинговера аллельные гены, бывшие в составе групп сцепления у родительских особей, разделяются и формируют новые сочетания, попадающие в гаметы. Происходит рекомбинация генов.

11. Как идёт формирование пола у животных и человека.

В формировании признаков пола выделяют четыре уровня:

- хромосомное определение пола;

- определение пола на уровне гонад;

- фенотипическое определение пола (половых признаков);

- психологическое определение пола.

Хромосомное определение пола у животных и человека происходит в момент оплодотворения. Для человека это формирование кариотипа 46 XX или 46 ХУ, что определяется гаметой гетерогаметного пола. У человека женский пол гомогаметный, а мужской пол гетерогаметный. У птиц и бабочек, наоборот, самцы гомогаметные, а самки - гетерогаметные. У прямокрылых насекомых самки гомогаметны, с кариотип XX, а самцы гетерогаметны - ХО, у последних отсутствует у-хромосома.

Определение пола на уровне гонад у человека начинается с того, что на 3 - й неделе эмбрионального развития в энтодерме желточного мешка появляются первичные зародышевые клетки, которые под действием хемотаксических сигналов мигрируют в область закладки гонад (половых желез). Дальнейшее развитие признаков пола определяется наличием или отсутствием в кариотипе у-хромосомы.

Семенники развиваются, если имеется Y-хромосома. Под контролем у-хромосомы в первичных зародышевых клетках начинает синтезироваться Н-Y-антиген, который кодируется структурным аутосомным геном, контролируемым Y-хромосомой. Для превращения зачатка гонады в семенник достаточно уже малой концентрации Н-Y-антигена. На развитие семенников также оказывает влияние, по меньшей мере, ещё 19 генов: аутосомных и сцепленных с Х-хромосомой. А под действием хориогонического гонадотропина, секретируемого плацентой матери, в семенниках начинают вырабатываться мужские половые гормоны (андрогены) - это тестостерон и 5-дигидро-тестостерон.