Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
415401.rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
308.99 Кб
Скачать

4.Физические свойства

Титан — легкий серебристо-белый металл. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой (a=2,951 Å; с=4,679 Å[9]; z=2; пространственная группа C6mmc), β-Ti с кубической объёмноцентрированной упаковкой (a=3,269 Å; z=2; пространственная группа Im3m), температура перехода α↔β 883 °C, ΔH перехода 3,8 кДж/моль. Точка плавления 1660±20 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³[1], атомная плотность 5,71×1022 ат/см³[источник не указан 576 дней]. Пластичен, сваривается в инертной атмосфере. Удельное сопротивление 0,42 мкОм·м при 20 °C

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

5.Химические свойства

Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен[10].

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4).

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2−.

При нагревании на воздухе до 1200 °C Ti загорается с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2 амфотерны.

TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанат:

TiO2+K2CO3=K2TiO3+CO2.

При нагревании Ti взаимодействует с галогенами. Тетрахлорид титана TiCl4 при обычных условиях — бесцветная жидкость, сильно дымящая на воздухе, что объясняется сильным гидролизом TiCl4 содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.

Восстановлением TiCl4 водородом, алюминием, кремнием, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 — твёрдые вещества с сильно восстановительными свойствами. Ti взаимодействует с Br2 и I2.

С азотом N2 выше 400 °C титан образует нитрид TiNx(x=0,58-1,00). При взаимодействии титана с углеродом образуется карбид титана TiCx (x=0,49-1,00).

При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHх (x=1,0). При нагревании эти гидриды разлагаются с выделением H2. Титан образуетсплавы со многими металлами.

6.Сплавы на основе титана

Титан - твердый металл: он в 12 раз тверже алюминия, в 4 раза - железа и меди. Титан химически стоек. На поверхности титана легко образуется стойкая оксидная пленка TiO2, вследствие чего он обладает высокой сопротивляемостью коррозии в пресной и морской воде и в некоторых кислотах, устойчив против коррозии под напряжением. Во влажном воздухе, в морской воде и азотной кислоте он противостоит коррозии не хуже нержавеющей стали, а в соляной кислоте во много раз лучше ее. При температурах выше 500°С титан и его сплавы легко окисляются и поглощают водород, который вызывает охрупчивание (водородная хрупкость).

Титан имеет две полиморфные модификации:

  • · низкотемпературную модификацию a -Ti, устойчивую до 882°С, (ГП - решетка а = 0,296 нм, с = 0,472 нм)

  • · высокотемпературную b -Ti, устойчивую выше 882оС (ОЦК решетка а= 0,332 нм).

На механические свойства титана значительно влияют примеси кислорода, водорода, углерода и азота, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: оксиды, гидриды, карбиды и нитриды, повышая его характеристики прочности при одновременном снижении пластичности. Поэтому содержание этих примесей в титане ограничено сотыми и даже тысячными долями процента. Опасность водородной хрупкости, особенно в напряженных сварных конструкциях ограничивает содержание водорода. В техническом титане оно находится в пределах 0,008 - 0,012%.

Титан обладает высокой прочностью и удельной прочностью и в условиях глубокого холода, сохраняя при этом достаточную пластичность.

t, оС

+20

-70

-196

s В, МПа

600-700

800...900

1000...1200

d, %

20-30

10-5

3-10

Сплавы на основе титана

Для получения сплавов титан легируют Al, Mo, V, Mn, Cr, Sn, Fe, Zr, Nb. Титан легируют для улучшения механических свойств, реже — для повышения коррозионной стойкости. Удельная прочность (sв/r) титановых сплавов выше, чем легированных сталей.

Все легирующие элементы по влиянию на полиморфизм титана подразделяются на три группы:

1. a -стабилизаторы — элементы, повышающие Тпп титана (Рис. 5.13 а). Из металлов к числу a -стабилизаторов относятся Al, Ga, In, из неметаллов — C, N, O.

2. b -стабилизаторы —элементы, понижающие Тпп титана. Их можно разбить на три подгруппы. В сплавах титана с элементами 1 подгруппы при достаточно низкой температуре происходит эвтектоидный распад b -фазы b à a +g (Рис. 5.13 б); к их числу относятся Si, Cr, Mn, Fe, Co, Ni, Cu, называемые эвтектоидообразующими b -стабилизаторами.

а

б

в

Рисунок 5.13. Влияние легирующих элементов на температуру полиморфного превращения титана

В сплавах титана с элементами 2 подгруппы b -раствор сохраняется до комнатной температуры. К числу этих элементов принадлежат V, Mo, Nb, Ta. Поскольку они образуют непрерывные твердые растворы с b -титаном, их назвали изоморфными b - стабилизаторами.

В сплавах 3 подгруппы равновесная b - фаза также стабилизируется при комнатной температуре, но непрерывных твердых b - растворов не образуется. К элементам этой подгруппы относятся Re, Ru, родий Rh, осмий, иридий, которые в области, богатой титаном, дают с ним такую же диаграмму состояния, как и изоморфные b -стабилизаторы (см. Рис. 3). Их можно назвать квазиизоморфными b - стабилизаторами.

3. Третья группа представлена легирующими элементами, мало влияющими на Тпп титана. Это олово, цирконий, германий, гафний и торий, которые называют нейтральными упрочнителями.

Почти все промышленные титановые сплавы содержат алюминий.

титан сплав полиморфный

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]