- •1. Определение и содержание науки о тяге поездов.
- •2. Уравнение движения поезда.
- •2.1. Уравнение движения одиночного экипажа (одиночно следующего локомотива).
- •2.2. Уравнение движения поезда.
- •2.3. Методы интегрирования уравнения движения поезда.
- •3. Сопротивление движению поезда.
- •3.1. Основное сопротивление движению.
- •3.1.1. Сопротивление движению при трогании с места.
- •3.2. Дополнительное сопротивление движению.
- •3.2.1. Сопротивление движению от уклонов.
- •3.2.2. Сопротивление движению от кривых.
- •3.2.3. Сопротивление движению в тоннелях.
- •3.2.4. Сопротивление движению от подвагонных генераторов.
- •3.3. Добавочное сопротивление движению.
- •3.3.1. Сопротивление движению от ветра.
- •3.3.2. Сопротивление движению от низких температур.
- •3.4. Мероприятия по снижению сопротивления движению.
- •4. Образование и реализация силы тяги.
- •4.1. Образование силы тяги при точечном контакте колеса и рельса.
- •4.2. Реализация силы тяги с учетом упругой деформации колеса и рельса.
- •4.3. Перераспределение сил взаимодействия колеса и рельса под действием вращающего момента.
- •4.4. Реализация силы тяги. Срыв сцепления.
- •4.5. Практическая оценка коэффициента сцепления.
- •4.6. Факторы, влияющие на реализацию силы тяги.
- •4.7. Мероприятия по повышению использования сцепной массы.
- •4.8. Устройства обнаружения боксования.
- •4.9. Сравнение схем соединения тд по отношению к боксованию.
- •5. Торможение.
- •5.1. Классификация систем торможения эпс.
- •5.2. Принцип возникновения тормозной силы при механическом колодочном торможении.
- •5.3. Расчетный тормозной коэффициент.
- •5.4. Общие требования к системам электрического торможения. Классификация электрического торможения.
- •5.5. Реостатное торможение с самовозбуждением тд.
- •5.6. Реостатное торможение с независимым возбуждением.
- •5.7. Реверсивное торможение (торможение противовключением).
- •5.8. Рекуперативное торможение.
- •6. Энергетика движения поезда.
- •6.1. Задачи расчета расхода электроэнергии на движение поезда.
- •6.2. Аналитический метод определения расхода электроэнергии.
- •6.3. Статистические методы определения расхода электроэнергии.
- •6.4. Факторы, влияющие на расход электроэнергии.
- •6.5. Выбор энергооптимального режима движения поезда по перегону.
- •6.6. Методы энергооптимизации оптимизации скорости движения поезда.
- •7. Нагревание тд.
- •7.1. Необходимость проверки тд на нагревание.
- •7.2. Аналитический расчет нагревания тд.
- •7.4. Проверка мощности тд методом среднеквадратичного тока.
- •7.5. Расчет нагрева тд при повторных рейсах.
- •7.6. Определение тепловых характеристик тд по номинальным данным.
- •8. Выбор рациональных схем формирования поездов повышенной массы и длины.
- •8.1. Особенности движения поездов повышенной массы и длины.
- •8.2. Выбор рациональных схем формирования грузовых поездов.
- •9. Тяговые и тормозные свойства эпс с бесколлекторными тд.
- •9.1. Тяговые и тормозные свойства асинхронного тд.
- •9.2. Тяговые и тормозные свойства вентильного тд.
- •10. Тягово-эксплуатационные испытания эпс.
- •10.1. Назначение и классификация испытаний.
- •10.2. Методика определения коэффициента сцепления, коэффициента инерции вращающихся частей и основного сопротивления движению эпс.
4.7. Мероприятия по повышению использования сцепной массы.
Эти мероприятия проводят в двух направлениях:
Увеличение силы сцепления колес с рельсами – совершенствование ЭПС.
Улучшение использование силы сцепления – условия эксплуатации.
Начнем с условий эксплуатации. Наиболее простым и распространенным способом является подача песка в зону контакта колеса и рельса. Подачу песка необходимо производить небольшими порциями, чтобы не произошло заметного увеличения сопротивления движению. При этом размер зерен песка не должен превышать 2 мм. Наиболее экономичное и эффективное использование этого способа достигается при автоматической подаче песка. До скорости 10 км/ч на мокрых рельсах при подаче песка коэффициент сцепления увеличивается на 70–75%. По мере роста скорости эффект использования песка снижается. Следует отметить, что важно подавать песок в начале процесса боксования, т.к. ликвидация развившегося процесса боксования может привести к повреждению ТД. Основной недостаток способа – сильное загрязнение пути и оборудования ЭПС песком.
Кроме песка испытывались и другие средства:
нанесения на головку рельса равномерного слоя этиловых соединений (при обилии воды на рельсах эффекта не дает);
механическая очистка (обдув) рельса – улучшает состояние поверхностей катания. Дает эффект до скорости 20 км/ч;
электроискровая или плазменная обработка поверхностей катания колеса и рельса – дает значительное увеличение коэффициента сцепления, но резко повышает износ колеса и рельса;
подача в зону контакта воды под большим давлением (за рубежом) – дает некоторое увеличение коэффициента сцепления, но неприменимо зимой.
Еще одним способом увеличения использования сцепной массы является применение противоразгрузочных устройств. На электровозах с унифицированном кузовом (ВЛ10, ВЛ80) к раме кузова крепится пневмоцилиндр 1, шток которого посредством рычага 2 воздействует на раму тележки. Возможно применение электромагнитных догружателей. Так же для компенсации разгрузок колесных пар устанавливают связи тележки с рамой кузова в виде наклонных тяг (ВЛ85, ВЛ65, ЭП1). Угол наклона тяг выбирают таким образом, чтобы продолжение их геометрических осей пересекались с плоскостью поверхности рельсов в точке, через которую проходит вертикальная ось симметрии тележки. Это эквивалентно расположению точки передачи силы тяги на уровне головки рельса и не вызывает перераспределения вертикальных сил между отдельными колесными парами.
С целью предотвращения боксования предусматривают уравнительные соединения между параллельно включенными ТД (электрическое спаривание осей), которые по исполнению могут быть нескольких типов:
с уравнительным резистором (увеличиваются потери электроэнергии);
с уравнительным контактором (не увеличивает потери и повышает эффект выравнивания);
полупроводниковые (позволяют произвести точную настройку порога срабатывания).
Выбор схемы уравнительных соединений зависит от схемы соединения ТД и общей компоновки схемы силовых цепей электровоза.
Р
ассмотрим
процессы, происходящие в схеме с
уравнительным соединением. Предположим,
что до начала процесса боксования ЭДС
обоих ТД были равны (Е1 = Е2).
В случае развития процесса боксования,
например у колесной пары ТД1, его ЭДС
будет увеличиваться за счет увеличения
скорости вращения. При этом возникнет
уравнительный ток, который будет
направлен навстречу тяговому току ТД1
и сонаправлен с тяговым током ТД2. Этот
ток вызовет снижение силы тяги ТД1 и
увеличение силы тяги ТД2. Вывод:
уравнительное соединение позволяет
разгрузить боксующий ТД, оно же догружает
ТД, спаренный с боксующим, что чревато
срывом последнего в боксование.
К
роме
уравнительных соединений используются
устройства, снижающие силу тяги боксующего
ТД. Это может достигаться путем
шунтирования якоря боксующего ТД (у ТД
последовательного возбуждения), либо
снижением магнитного потока у ТД
независимого или смешанного возбуждения.
Для увеличения нагрузки на колесную пару возможно использование добалластировки (ВЛ10У). Этот способ усугубляет статическую неравномерность распределения сцепной массы. Кроме этого увеличивается лишь средняя сила сцепления, а, как известно, средняя сила сцепления является математическим ожиданием силы сцепления, величина которой имеет разброс до 50% на практике. Т.е., например, для восьмиосного электровоза (ВЛ10), увеличение статической сцепной массы на 12 т дает увеличение сцепной массы на 3 т (25%), а 9 т – являются "мертвым" грузом, лишь разбивая пути, искусственные сооружения и увеличивающие расходы электроэнергии на тягу.
