Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Стали.rtf
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
47.3 Mб
Скачать

Средние показатели выплавки высокопрочной стали

Технология

[O], %

[S], %

Содержание  неметаллических включений,  % по объему

оксиды

сульфиды

Использование УВРВ и РЗМ

0,0021

0,004

0,015

0,010

Обычные  раскислители

0,005–0,009

0,01–0,02

0,052

0,045

Рис. 13.9. Температурные зависимости ударной вязкости (а), доли вязкой составляющей в изломе  (б) и трещиностойкости (в) высокопрочной стали, выплавленной по двум (1, 2) вариантам

Термоциклирование

Эффективным методом измельчения зерна является термическая обработка и термоциклирование. Термоциклическая обработка (ТЦО) сопровождается многократными фазовыми превращениями при циклических нагревах и охлаждениях с оптимальными скоростями. Нагревы и охлаждения проводят в области неполного α → γ-превращения в межкритическом интервале температур. Кроме измельчения зерна ТЦО обеспечивает термонаклеп и концентрацию вредных примесей в изолированных участках рельефного феррита, что также способствует повышению свойств стали. Исследование влияния режимов термической обработки на механические свойства проводили на сталях 20Л и 20ФЛ. При использовании термоциклирования были получены более высокие характеристики механических свойств, а вязкость разрушения возросла в 1,5 раза.

Это объясняется характером получаемой структуры и измельчением зерна.

Так, при замене нормализации на термоциклическую обработку происходит изменение структуры от феррито-перлитной к мелкодисперсной упорядоченной смеси перлитообразного сорбита и феррита (рис. 13.10). При этом также происходит существенное измельчение действительного аустенитного зерна (с 5–6 до 10–11 балла). В нормализованной структуре достаточно хорошо видны контуры грануляционной сетки, которые почти полностью исчезают после термоциклирования (рис. 13.10, аб).

Рис 13.10. Микроструктура стали 20Л после  нормализации (а) и термоциклирования (б), а также микрорельеф излома ударных образцов при –60 °С  после нормализации (в) и термоциклирования (г):  а) 750×б) 1000×в)г) 300×

Характер поверхности разрушения при этом также изменяется. На рис. 13.10, вг показан микрорельеф излома образцов, испытанных на ударный изгиб при –60 °С. В первом случае излом образован фасетками скола, а во втором — фасетками квазискола с более активным выявлением трещины, сопровождаемым дополнительным поглощением энергии.

Этот способ может быть также использован в других сплавах, имеющих превращение, близкое по своим характеристикам к преврщению в стали.

После термоциклирования стали по сравнению со сталями, прошедшими обычную термическую обработку, имеют значительно более высокие прочностные свойства при одновременном снижении порога хладноломкости в области более низких температур. Термоциклирование дает такое упрочнение, при котором повышение прочностных свойств достигается без снижения пластичности и ударной вязкости.

Термоциклическая обработка (ТЦО) благодаря получению сверхмелкого зерна способствует повышению штампуемости сталей и даже переводу материала в состояние сверхпластичности.

ТЦО улучшает вязкость зоны термического влияния при электрошлаковой сварке крупногабаритных плит из стали 10ГН2МФА атомных энергетических установок. Практическое совмещение ТЦО с электрошлаковой сваркой достаточно просто. Оно осуществляется синхронно с прохождением водоохлаждаемого формирующего ползуна перемещением индуктора, питаемого от стабилизированного источника питания повышенной частоты. После электрошлаковой сварки ударная вязкость KCU металла зоны термического влияния при 20 °С составила 26 Дж/см2, а после 5 циклов ТЦО она возросла до 158 Дж/см2.

Трехкратное повторение циклов фазовых превращений α ↔ γ толстолистовой корпусной углеродистой стали 22К (0,19–0,28 % С; 0,75–1,00 % Mn) позволило получить мелкозернистую структуру с глобулярным цементитом, что обеспечило по сравнению с обычной термообработкой снижение на 25 °С критической температуры вязко-хрупкого перехода, повышение вязкости разрушения на 30–40 % при температурах до –100 °С. Для металла, подвергнутого ТЦО, предел выносливости на базе 5000 циклов составил 490 МПа по сравнению с 430 МПа для улучшенного состояния.

Использование ТЦО сплавов алюминия, титана и никеля также позволило повысить характеристики вязкости разрушения, длительной и усталостной прочности. Кроме того, ТЦО сплавов на основе Al—Mg—Si может с успехом заменить длительную операцию искусственного старения, одновременно повысив общую пластичность в 1,5–1,7 раза.

Конструктивные факторы

Масштабный эффект. Механическую прочность стали и ее работоспособность обычно определяют в лабораторных условиях на образцах малых размеров по сравнению с действительными изделиями. Эти данные используют для оценки пригодности стали и для расчета конструкций.

Однако, в действительности существуют расхождения механических свойств конкретных изделий и образца даже при соблюдении подобия геометрических размеров и условий испытания с условиями эксплуатации. Эти явления называют масштабным эффектом или масштабным фактором.

Увеличение размеров детали способствует стеснению пластического течения, которое возрастает по мере удаления от ее свободной поверхности. В центральной части крупных изделий может развиваться объемное напряженное состояние, близкое к равномерному трехосному растяжению. Разрушение таких изделий, по крайней мере в центральной части, носит хрупкий характер.

Следует также иметь в виду, что появление дефектов в материале подчиняется вероятностным законам, вследствие чего прочность имеет статистическую природу. Чем больше размер образца, тем больше опасность присутствия в нем опасных дефектов, развития ликвации, пористости, различия в размерах зерен, меньшей степени проработки структуры при ковке, прокате или термической обработке. Так, например, из-за слабой прокаливаемости в больших сечениях критическая температура хрупкости может повышаться на 20 °С и более. Все это увеличивает склонность к хрупким разрушениям.

Типичная кривая зависимости коэффициента интенсивности напряжений от размеров образцов представлена на рис. 13.11. Видно, что для геометрически подобных образцов с увеличением размеров происходит ассимптотический переход от больших значений Kc к меньшим. С увеличением толщины образца температурная зависимость Kc смещается в область более высоких температур. Кроме того, с увеличением размера детали d происходит уменьшение доли поверхностной энергии в общем балансе энергий, так как накапливаемая упругая энергия растет пропорционально 3, а поверхностная энергия — 2. Поэтому масштабный фактор проявляется не только в ужесточении напряженного состояния и воздействии на структуру, но и в увеличении способности системы к накоплению избыточной энергии упругой деформации.

Рис. 13.11. Зависимость вязкости разрушения  от толщины образца

Концентраторы напряжения. Влияние конструктивных концентраторов напряжений (надрезы, выточки, переходы, шейки и т. д.) оказывают существенное влияние на прочность, характер разрушения и надежность изделий.

Анализ причин хрупких разрушений показывает, что трещины обычно начинаются от надрезов, являющихся концентраторами напряжений. Надрезом является любое нарушение непрерывности металла. К надрезам относятся дефекты сварных соединений (пористость, непровар, пустоты по сечению шва), поверхностные царапины, неметаллические включения, газовые раковины. В месте надреза пластическая деформация стеснена, что приводит к увеличению сопротивления пластической деформации, т. е. к росту σт. Чем острее и глубже надрез, тем больше стеснена пластическая деформация, тем выше σт. Под влиянием надрезов металл разрушается хрупко при более высокой температуре (табл. 13.3). Чувствительность к концентрации напряжений является важной характеристикой надежности материала, по которой более прочный металл чаще уступает менее прочному.

Таблица 13.3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]