
- •Вопрос 2
- •Вопрос 3
- •Вопрос 5
- •Основные типы резисторов
- •Вопрос 6
- •Вопрос 8
- •Принцип работы tvs-диода
- •Вопрос 9
- •Вопрос 10
- •Принцип действия
- •Вопрос11
- •По основному полупроводниковому материалу
- •Вопрос 12
- •Основные параметры биполярного транзистора.
- •Вопрос 13
- •Вопрос 14
- •Вопрос 16
- •Вопрос 17
- •Вопрос 18
- •Вопрос 19
- •Вопрос 20
- •Вопрос 21
- •Вопрос 22
- •Вопрос 23 операционный усилитель с обратной связью по току
- •Вопрос 24
- •Вопрос 25
- •Вопрос 26
- •Вопрос 27
- •Вопрос 28
- •Вопрос 29
- •Вопрос 30
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33
- •Вопрос 35
- •Вопрос 37
- •Типы уБп
- •Вопрос 42
- •Вопрос 43
- •Троичный компаратор
- •Вопрос 44
- •Вопрос 44
- •Вопрос 46
- •Вопрос 47
- •Вопрос 48
- •Параметры цифровых микросхем
- •Вопрос 49 Параметры цифровых микросхем
- •Вопрос 50
- •Вопрос 51
- •Вопрос 52
- •Принцип работы
- •Применение]
- •Вопрос 53
- •Особенности применения микросхем с ттл логикой
- •Семейства ттл микросхем
- •Вопрос 54 Логические уровни ттл микросхем
- •Вопрос 55 Логические кмоп (кмдп) инверторы
- •Вопрос 56 Особенности применения кмоп-микросхем
- •Вопрос 57 Логические уровни кмоп-микросхем
- •Семейства кмоп-микросхем
- •Вопрос 57
- •Применение
- •Типы цап[править | править исходный текст]
- •Характеристики[править | править исходный текст]
- •Вопрос 59 Типы ацп
- •2. Последовательно-параллельные ацп
- •Параллельное ацп Flash adc
- •Вопрос 61
- •Вопрос 62 Классификация плис
- •Вопрос 63
- •Вопрос 64
- •Внутреннее устройство cpld
- •Разработка цифровых устройств на cpld
- •Вопрос 65
Вопрос 1 Зако́н Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не изменяются. Следует также иметь в виду, что закон Ома является фундаментальным и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.
Законы Ома и Кирхгофа
Закон Ома для всей цепи выражает соотношение между электродвижущей силой (ЭДС), сопротивлением и током. Согласно этому закону ток в замкнутой цепи равен ЭДС источника деленной на сопротивление всей цепи:
где I - ток, протекающий по цепи;
E - ЭДС, генератора, подключенного к электрической цепи;
Rг - сопротивление генератора;
Rц - сопротивление цепи.
Закон Ома для участка цепи. Ток на участке цепи прямо пропорционален напряжению между началом и концом участка и обратно пропорционален сопротивлению участка. Аналитически закон выражается в следующем виде:
где I - ток, протекающий на участке цепи;
R - сопротивление участка цепи;
U - напряжение на участке цепи.
Обобщенный закон Ома. Сила тока в контуре цепи прямо пропорциональна алгебраической сумме ЭДС всех источников цепи и обратно пропорциональна арифметической сумме всех активных сопротивлений цепи.
где m и n – количество источников и резисторов в контуре цепи.
При алгебраическом суммировании со знаком “плюс” берутся те ЭДС, направление которых совпадает с направлением тока, а со знаком “минус”– те ЭДС, направление которых не совпадает с направлением тока.
Первый закон Кирхгофа. Электрические цепи подразделяют на неразветвленные и разветвленные. На рис. 1.10 представлена простейшая разветвленная цепь.
Физически первый закон Кирхгофа означает, что движение зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются.
Второй закон Кирхгофа устанавливает связь между ЭДС, токами и сопротивлениями в любом замкнутом контуре, который можно выделить в рассматриваемой цепи.
В соответствии со вторым законом Кирхгофа алгебраическая сумма ЭДС, действующих в любом контуре разветвленной электрической цепи, равна алгебраической сумме падений напряжений на всех сопротивлениях контура
Вопрос 2
Дели́тель то́ка — электротехническое устройство, позволяющее разделять ток и использовать только часть от подаваемого в цепь тока посредством электрических элементов.
Где применяется делитель тока? Делитель тока применяется в измерительных приборах, когда необходимо измерить большой ток (единицы, или сотни Ампер) прибором, рассчитанным на маленький ток (миллиамперы или даже микроамперы). В этом случае, внутреннее сопротивление измерительного прибора выступает в качестве одного из резисторов, а второй резистор в таком случае называют "шунтом", так как он шунтирует проходящий ток (основная часть тока бежит через него). Шунт в схеме измерения имеет сопротивление, которое намного меньше внутреннего сопротивления измерительного прибора. Кроме того, делитель тока применяется в различных схемах автоматического регулирования, использующих в качестве контролируемого параметра - ток, проходящий через электрическую цепь. Делитель тока может применяться в различных каскадах передачи, или усиления тока, когда один пассивный, или усилительный элемент по своим электрическим параметрам не способен обеспечить прохождение через него большого тока. В этом случае их подключают параллельно, разделяя ток на равные доли (пополам). Наглядным примером использования делителя тока является его применение в цепи автоматического регулирования и измерения в Универсальном зарядном устройстве, или в цепи контроля схемы защиты от перегрузки по току и удвоения мощности выходных транзисторов в Универсальном блоке стабилизированного питания.
Изобразим цепь делителя тока:
На рисунке видно, что общий входящий ток делится на два, и проходя цепь, снова объединяется в один.
Выведем закон Ома для этой цепи. Его можно записать в следующем виде:
Определить ток I1 и I2 в плечах резисторов R1, R2 по известным значениям общего тока Iобщ и сопротивлений резисторов R1, R2
Расчитать шунт R2 в цепи измерительного прибора, при известных: внутреннем сопротивлении R1, максимальном токе обмотки катушки прибора I1 и максимальном значении общего тока Iобщ цепи делителя тока, представленного на схеме
Для достижения точности в измерительных цепях, выбирают высокоточные резисторы, кроме того, используют их последовательное и параллельное соединение.
Вопрос 3
Теорема тевина
Для
линейных электрических
цепей утверждает,
что любая электрическая цепь, имеющая
два вывода и состоящая из комбинации источников
напряжения, источников
тока и резисторов (сопротивлений),
с электрической точки зрения эквивалентна
цепи с одним источником напряжения V и
одним резистором R, соединёнными
последовательно. Иначе говоря, ток в
любом сопротивлении
,
присоединенном к любой цепи, равен току
в этом же сопротивлении, присоединеном
к генератору с напряжением, равным
напряжению холостого хода цепи и
обладающим внутренним сопротивлением,
равным полному сопротивлению "закрытой
части" цепи, определенному со стороны
зажимов при
условии, что все источники внутри цепи
заменены полными сопртоивлениями,
равными внутреним полным сопротивлениям
этих источников.
Теорема может также применяться для цепей переменного тока с единственной частотой, но учитываться должны не сопротивления, а импедансы. Теорема была впервые сформулирована немецким учёным Германом фон Гельмгольцем в 1853 г.[2] и французским телеграфным инженером Леоном Шарлем Тевененом (англ.) в 1883 г.[3][4]
Ква́нтовая суперпози́ция (когерентная суперпозиция) — это суперпозиция состояний, которые не могут быть реализованы одновременно с классической точки зрения, это суперпозиция альтернативных (взаимоисключающих) состояний. Принцип существования суперпозиций состояний обычно называется в контексте квантовой механики просто принципом суперпозиции.