
- •Принятые обозначения и сокращения
- •1. Латинские прописные буквы:
- •2. Греческие буквы:
- •Введение. Некоторые понятия и определения
- •Типы производств
- •Раздел I. Металловедение и термическая обработка
- •Тема 1. Кристаллическое строение и свойства металлов и сплавов
- •1.1. Свойства материалов
- •1.2. Виды деформации
- •1.3. Механические свойства
- •1.4. Технологические свойства
- •Тема 2. Железоуглеродистые сплавы. Термическая и химико-термическая обработка стали
- •2.1. Сплавы
- •Основные компоненты железоуглеродистых сплавов:
- •Структурные составляющие железоуглеродистых сплавов:
- •2.3. Химико-термическая обработка
- •Тема 3. Классификация, маркировка и применение металлов и сплавов
- •3.1. Основные примеси железоуглеродистых сплавов
- •3.2. Классификация сталей
- •3.3. Конструкционные углеродистые стали
- •3.4. Инструментальные углеродистые стали
- •3.5. Конструкционные легированные стали
- •3.6. Инструментальные легированные стали
- •3.7. Стали и сплавы с особыми свойствами
- •3.8. Чугуны
- •3.9. Цветные металлы и сплавы
- •Раздел II. Литейное производство
- •Тема 4. Сущность литья. Литье в разовые песчано-глинистые формы (пгф)
- •4.1. Литье
- •4.2. Основные характеристики и требования к формовочным смесям
- •Стержневые смеси на основе песка
- •4.3. Формовка
- •Тема 5. Плавка чугуна и стали
- •5.1. Литейные свойства сплавов
- •Литейные свойства сплавов
- •5.2. Исходные материалы для плавки
- •5.3. Получение чугуна в доменной печи
- •5.4. Плавка стали
- •Плавка стали в основной дуговой электропечи
- •5.5. Новые способы производства (переплава) стали
- •Тема 6. Специальные способы литья
- •6.1. Литье в оболочковые формы
- •6.2. Литье по выплавляемым моделям
- •6.3. Литье в кокиль (постоянные металлические формы)
- •6.4. Центробежное литье
- •6.5. Литье под давлением
- •Раздел III. Обработка металлов давлением (омд)
- •Тема 7. Сущность обработки металлов давлением. Нагрев металла под омд
- •7.1. Холодная пластическая деформация
- •7.2. Горячая пластическая деформация
- •Температурный интервал омд
- •Тема 8. Получение машиностроительных профилей
- •8.1. Основные виды профилей
- •8.2. Прокатка
- •8.3. Волочение
- •8.4. Прессование
- •Тема 9. Кузнечно-прессовое производство
- •9.1. Исходные материалы
- •9.2. Кузнечно-прессовое оборудование
- •9.3. Свободная ковка ручная и машинная
- •9.4. Объемная холодная и горячая штамповка
- •9.5. Листовая штамповка
- •9.6. Ротационные способы изготовления поковок
- •Раздел IV. Сварочное производство Общие понятия о сварке плавлением и давлением
- •Тема 10. Сварка плавлением (термическая)
- •10.1. Электрическая дуговая сварка
- •10.2 Плазменная сварка
- •10.3 Особые виды электросварки
- •10. 4. Газовая сварка
- •Тема 11. Термомеханическая и механическая сварка
- •11.1. Свариваемость металлов и сплавов
- •11.2. Пайка
- •Раздел V. Механическая обработка заготовок
- •Тема 12. Сущность обработки металлов резанием, металлорежущие станки и инструмент
- •12.1. Параметры режима резания
- •12.2. Обрабатываемость конструкционных материалов
- •12.3. Инструментальные материалы
- •12.4. Классификация металлорежущих станков
- •Тема 13. Технологические процессы механической обработки
- •13.1. Основные технологические методы обработки заготовок деталей машин
- •13.2. Строгание, долбление, протягивание
- •13.3. Обработка отверстий на сверлильных и расточных станках
- •13.4. Фрезерование
- •13.5. Шлифование
- •13.6. Методы отделки поверхностей
- •Раздел VI. Технология электроэрозионной обработки
- •Тема 14. Электрофизические и электрохимические методы обработки
- •14.1. Электроэрозионные методы
- •14.2. Электрохимическая обработка
- •14.3. Анодно-механическая обработка
- •14.4. Химическая обработка
- •14.5. Ультразвуковая обработка
- •14.6. Лучевая обработка
- •Раздел VII. Изготовление деталей из композиционных материалов
- •Тема 15. Изготовление деталей из порошковых материалов
- •15.1. Металлокерамические заготовки и изделия
- •15.2. Композиционные материалы
- •15.3. Технология изготовления деталей
- •Тема 16. Полимерные композиционные материалы – пластмассы и резина
- •16.1. Пластмассы
- •16.2. Классификация полимеров и пластмасс
- •16.3. Типовые термопластичные материалы (термопласты)
- •16.4. Типовые термореактивные материалы (реактопласты)
- •Слоистые армированные реактопласты
- •Пластмассы с листовыми наполнителями
- •16.5. Резиновые материалы
- •Специальные резины
- •Тема 17. Изготовление деталей из пластмасс и резины
- •17.1. Переработка пластмасс в вязкотекучем состоянии
- •17.2. Изготовление деталей из жидких пластиков
- •17.3. Обработка пластмасс резанием
- •17.4. Изготовление резиновых технических изделий
- •18 Лабораторный практикум
- •18.1 Общие методические указания
- •18.2 Лабораторная работа № 1 Тема: Методы определения твердости железоуглеродистых сплавов.
- •Краткие теоретические сведения
- •А) по Бринеллю; б) по Виккерсу; в) по Роквеллу.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов Испытание на приборе Бринелля
- •Результаты испытаний на приборе Бринелля
- •Испытания на приборе Роквелла
- •Результаты испытаний на приборе Роквелла
- •Содержание отчета
- •18.3 Лабораторная работа № 2
- •Краткие теоретические сведения
- •Перечень основного оборудования, контрольно – измерительных приборов и материалов, используемых на занятии
- •Тема: Влияние скорости охлаждения углеродистых сталей на их структуру и твердость.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •От скорости охлаждения (охлаждающей способности среды)
- •Результаты испытаний
- •Содержание отчета
- •Углеродистые качественные конструкционные стали
- •Легированные конструкционные стали
- •Низколегированные строительные стали
- •Подшипниковые стали
- •Углеродистые инструментальные стали
- •Низколегированные инструментальные стали
- •Быстрорежущие стали
- •Медь и ее сплавы
- •Алюминий и его сплавы
- •Магний и его сплавы
- •Титан и его сплавы
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •Результаты испытаний
- •Содержание отчета
- •18.7 Лабораторная работа № 6
- •Краткие теоретические сведения
- •Соотношениях:
- •Образцов.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработки результатов
- •Результаты испытаний
- •Содержание отчета
- •18.8 Лабораторная работа № 7
- •Краткие теоретические сведения
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •Содержание отчета
- •Список рекомендуемой литературы
- •Содержание
- •400131 Волгоград, просп. Им. В. И. Ленина, 28.
- •400131 Волгоград, ул. Советская, 35.
- •403882, Волгоградская обл., г. Камышин, ул. Красная, 14.
13.3. Обработка отверстий на сверлильных и расточных станках
По конструкции группа сверлильных станков разделяется на вертикально-сверлильные, радиально-сверлильные, горизонтально-расточные, координатно-расточные, алмазно-расточные (рис. 13.11).
На вертикально-сверлильных производится обработка сравнительно небольших деталей. В качестве инструментов используются свёрла разных типов, зенкеры, зенковки, цековки, развёртки.
На радиально-сверлильных станках обычно обрабатываются крупные корпусные детали. Это обеспечивает поворотная траверса, по которой в радиальном направлении может перемещаться шпиндельная головка. Кроме инструментов, применяемых на вертикально-сверлильных станках, используются борштанги с резцами, позволяющие производить расточку отверстий.
На горизонтально-расточных станках можно выполнять те же операции, что и на радиально-сверлильном, но, кроме того, можно производить точение наружных поверхностей, подрезание торцов, нарезание резьбы резцами, а также фрезерование поверхностей. Эта универсальность достигается большой сложностью станка. Поэтому экономически оправдано использовать такие станки только для ответственных деталей сложной формы.
Координатно-расточные используются в основном для расточки крупных деталей, которые нельзя обработать на токарных станках (блоки цилиндров, корпуса редукторов и т. д.).
а
б в
г
Рис. 13.11. Основные
типы станков сверлильной группы:
а –
вертикально-сверлильный; б –
радиально-сверлильный;
в –
горизонтально-расточной; г –
координатно-расточной;
а: 1 –
фундаментная плита, 2 – колонна, 3 –
стол, 4 – кронштейн,
5 – коробка
передач, 6 – коробка скоростей;
б: 1 – фундаментная
плита, 2 – колонна, 3 – поворотная гильза,
4 – траверса,
5 – механизм
движения траверсы, 6 – шпиндельная
головка,
7 – коробка
скоростей, 8 – коробка передач, 9 –
шпиндель, 10 – стол;
в: 1 –
станина, 2 – стойка, 3 – шпиндельная
бабка, 4 – планшайба,
5 – радиальный
суппорт, 6 – расточной шпиндель, 7 –
задняя стойка,
8 – люнет, 9 –
салазки, 10 – каретка, 11 – поворотный
стол;
г: 1 –
станина, 2 – стойка, 3 – коробка скоростей,
4 – расточная головка,
5 – шпиндель, 6
– стол, 7 – салазки
13.4. Фрезерование
Главное движение при фрезеровании – это вращение фрезы. Движение подачи – поступательное перемещение заготовки или фрезы. Фреза – многолезвийный инструмент, каждый зуб которого за полный оборот фрезы находится в контакте с деталью относительно небольшое время, т. е. имеет место прерывистость резания.
Различают фрезерование встречное и попутное (рис. 13.12). При встречном скорости резания и движения направлены в противоположные стороны, поэтому толщина стружки при врезании фрезы плавно возрастает от нуля до максимума. Действующая на заготовку сила стремится оторвать ее от стола, поэтому возникают вибрации в вертикальном направлении. Т. к. при врезании толщина срезаемого слоя мала, то возможно скольжение зуба в месте врезания по поверхности металла без резания и его смятие, что вызывает упрочнение поверхностного слоя. Следующий зуб фрезы срезает поверхность упрочнённую предыдущим зубом. Это увеличивает износ фрезы и снижает качество обработки.
При попутном фрезеровании направления перемещения зуба фрезы и подачи совпадают, поэтому толщина срезаемого слоя при врезании максимальна, а затем убывает. Сила резания в этом случае прижимает заготовку к столу, поэтому вибрации в вертикальном направлении минимальны. Так как проскальзывания нет, то упрочнение металла меньше, поэтому больше стойкость фрезы и выше чистота поверхности. Однако, вследствие того, что направления перемещения зубьев фрезы и подачи совпадают, возникают сильные вибрации в горизонтальном направлении в результате выбора зазоров в механизме подачи винт-гайка поочерёдно, то в одну, то в другую стороны. Поэтому попутное фрезерование можно проводить только на станках, оборудованных механизмом, обеспечивающим выбор зазора в механизме продольной подачи. Так как зуб фрезы при попутном фрезеровании ударяет в необработанную поверхность, его нельзя применять в том случае, если на поверхности заготовки имеется твёрдая корка.
Различные виды фрез показаны на рис. 13.13. По форме режущей части их разделяют на цилиндрические, торцевые, дисковые (в т. ч. прорезные), концевые, угловые, шпоночные, фасонные, резьбовые, модульные. По конструкции: цельные, сборные со вставными зубьями. По форме зубьев: с прямыми, наклонными или винтовыми. Для сталей разной прочности используют фрезы с передним углом = 5…30, задним углом = 10…25. Кроме фрезерования плоскостей и канавок различной формы фрезерование используется для изготовления зубчатых колёс. Различные способы их изготовления показаны на рис. 13.14. Для сравнения там же показано изготовление зубчатых колёс долблением, которое является менее производительным методом.
На рис. 3.15 показаны схемы обработки станины станка и фасонной поверхности.
а
в
б
г
Рис. 13.12. Схемы
фрезерования цилиндрической (а) и
торцевой (б) фрезами;
в, г – схемы
резания;
1 – заготовка,
2 – фреза
г
Рис. 13.14. Схемы
формообразования зубьев цилиндрического
колеса:
а, б – методом
копирования; в, г – методом обкатывания
2 – нарезаемое
колесо, 3 – долбяк
1
1
1
2
1
2
2
б
3
а
в
2
Рис. 13.15. Схемы
обработки на фрезерных станках
На рис. 13. 16 показаны различные типы фрезерных станков: консольно-горизонтальный; вертикально-фрезерный; продольно-фрезерный двухстоечный; копировально-фрезерный.