
- •Принятые обозначения и сокращения
- •1. Латинские прописные буквы:
- •2. Греческие буквы:
- •Введение. Некоторые понятия и определения
- •Типы производств
- •Раздел I. Металловедение и термическая обработка
- •Тема 1. Кристаллическое строение и свойства металлов и сплавов
- •1.1. Свойства материалов
- •1.2. Виды деформации
- •1.3. Механические свойства
- •1.4. Технологические свойства
- •Тема 2. Железоуглеродистые сплавы. Термическая и химико-термическая обработка стали
- •2.1. Сплавы
- •Основные компоненты железоуглеродистых сплавов:
- •Структурные составляющие железоуглеродистых сплавов:
- •2.3. Химико-термическая обработка
- •Тема 3. Классификация, маркировка и применение металлов и сплавов
- •3.1. Основные примеси железоуглеродистых сплавов
- •3.2. Классификация сталей
- •3.3. Конструкционные углеродистые стали
- •3.4. Инструментальные углеродистые стали
- •3.5. Конструкционные легированные стали
- •3.6. Инструментальные легированные стали
- •3.7. Стали и сплавы с особыми свойствами
- •3.8. Чугуны
- •3.9. Цветные металлы и сплавы
- •Раздел II. Литейное производство
- •Тема 4. Сущность литья. Литье в разовые песчано-глинистые формы (пгф)
- •4.1. Литье
- •4.2. Основные характеристики и требования к формовочным смесям
- •Стержневые смеси на основе песка
- •4.3. Формовка
- •Тема 5. Плавка чугуна и стали
- •5.1. Литейные свойства сплавов
- •Литейные свойства сплавов
- •5.2. Исходные материалы для плавки
- •5.3. Получение чугуна в доменной печи
- •5.4. Плавка стали
- •Плавка стали в основной дуговой электропечи
- •5.5. Новые способы производства (переплава) стали
- •Тема 6. Специальные способы литья
- •6.1. Литье в оболочковые формы
- •6.2. Литье по выплавляемым моделям
- •6.3. Литье в кокиль (постоянные металлические формы)
- •6.4. Центробежное литье
- •6.5. Литье под давлением
- •Раздел III. Обработка металлов давлением (омд)
- •Тема 7. Сущность обработки металлов давлением. Нагрев металла под омд
- •7.1. Холодная пластическая деформация
- •7.2. Горячая пластическая деформация
- •Температурный интервал омд
- •Тема 8. Получение машиностроительных профилей
- •8.1. Основные виды профилей
- •8.2. Прокатка
- •8.3. Волочение
- •8.4. Прессование
- •Тема 9. Кузнечно-прессовое производство
- •9.1. Исходные материалы
- •9.2. Кузнечно-прессовое оборудование
- •9.3. Свободная ковка ручная и машинная
- •9.4. Объемная холодная и горячая штамповка
- •9.5. Листовая штамповка
- •9.6. Ротационные способы изготовления поковок
- •Раздел IV. Сварочное производство Общие понятия о сварке плавлением и давлением
- •Тема 10. Сварка плавлением (термическая)
- •10.1. Электрическая дуговая сварка
- •10.2 Плазменная сварка
- •10.3 Особые виды электросварки
- •10. 4. Газовая сварка
- •Тема 11. Термомеханическая и механическая сварка
- •11.1. Свариваемость металлов и сплавов
- •11.2. Пайка
- •Раздел V. Механическая обработка заготовок
- •Тема 12. Сущность обработки металлов резанием, металлорежущие станки и инструмент
- •12.1. Параметры режима резания
- •12.2. Обрабатываемость конструкционных материалов
- •12.3. Инструментальные материалы
- •12.4. Классификация металлорежущих станков
- •Тема 13. Технологические процессы механической обработки
- •13.1. Основные технологические методы обработки заготовок деталей машин
- •13.2. Строгание, долбление, протягивание
- •13.3. Обработка отверстий на сверлильных и расточных станках
- •13.4. Фрезерование
- •13.5. Шлифование
- •13.6. Методы отделки поверхностей
- •Раздел VI. Технология электроэрозионной обработки
- •Тема 14. Электрофизические и электрохимические методы обработки
- •14.1. Электроэрозионные методы
- •14.2. Электрохимическая обработка
- •14.3. Анодно-механическая обработка
- •14.4. Химическая обработка
- •14.5. Ультразвуковая обработка
- •14.6. Лучевая обработка
- •Раздел VII. Изготовление деталей из композиционных материалов
- •Тема 15. Изготовление деталей из порошковых материалов
- •15.1. Металлокерамические заготовки и изделия
- •15.2. Композиционные материалы
- •15.3. Технология изготовления деталей
- •Тема 16. Полимерные композиционные материалы – пластмассы и резина
- •16.1. Пластмассы
- •16.2. Классификация полимеров и пластмасс
- •16.3. Типовые термопластичные материалы (термопласты)
- •16.4. Типовые термореактивные материалы (реактопласты)
- •Слоистые армированные реактопласты
- •Пластмассы с листовыми наполнителями
- •16.5. Резиновые материалы
- •Специальные резины
- •Тема 17. Изготовление деталей из пластмасс и резины
- •17.1. Переработка пластмасс в вязкотекучем состоянии
- •17.2. Изготовление деталей из жидких пластиков
- •17.3. Обработка пластмасс резанием
- •17.4. Изготовление резиновых технических изделий
- •18 Лабораторный практикум
- •18.1 Общие методические указания
- •18.2 Лабораторная работа № 1 Тема: Методы определения твердости железоуглеродистых сплавов.
- •Краткие теоретические сведения
- •А) по Бринеллю; б) по Виккерсу; в) по Роквеллу.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов Испытание на приборе Бринелля
- •Результаты испытаний на приборе Бринелля
- •Испытания на приборе Роквелла
- •Результаты испытаний на приборе Роквелла
- •Содержание отчета
- •18.3 Лабораторная работа № 2
- •Краткие теоретические сведения
- •Перечень основного оборудования, контрольно – измерительных приборов и материалов, используемых на занятии
- •Тема: Влияние скорости охлаждения углеродистых сталей на их структуру и твердость.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •От скорости охлаждения (охлаждающей способности среды)
- •Результаты испытаний
- •Содержание отчета
- •Углеродистые качественные конструкционные стали
- •Легированные конструкционные стали
- •Низколегированные строительные стали
- •Подшипниковые стали
- •Углеродистые инструментальные стали
- •Низколегированные инструментальные стали
- •Быстрорежущие стали
- •Медь и ее сплавы
- •Алюминий и его сплавы
- •Магний и его сплавы
- •Титан и его сплавы
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •Результаты испытаний
- •Содержание отчета
- •18.7 Лабораторная работа № 6
- •Краткие теоретические сведения
- •Соотношениях:
- •Образцов.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработки результатов
- •Результаты испытаний
- •Содержание отчета
- •18.8 Лабораторная работа № 7
- •Краткие теоретические сведения
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •Содержание отчета
- •Список рекомендуемой литературы
- •Содержание
- •400131 Волгоград, просп. Им. В. И. Ленина, 28.
- •400131 Волгоград, ул. Советская, 35.
- •403882, Волгоградская обл., г. Камышин, ул. Красная, 14.
Тема 11. Термомеханическая и механическая сварка
Сущность сварки давлением заключается в сближении чистых поверхностей на расстояние (2 ... 4) 10-7 мм, при котором начинают действовать межатомные силы сцепления и образуются металлические связи за счет общих электронов. Предварительно следует удалить загрязняющие пленки оксидов, адсорбированных молекул воды и масляных пленок (жировых веществ), толщина которых может быть 100 ... 200 молекул. Для высокопрочных материалов применяют подогрев.
Контактная (термомеханическая) сварка осуществляется в результате нагрева соединяемых стыков под действием электрического тока до t горячей деформации или до плавления при одновременном сдавливании, обеспечивающем пластическое деформирование. Различают точечную, стыковую и рельефную контактную сварку.
При стыковой сварке соединение свариваемых деталей происходит по поверхности стыкуемых торцов (рис. 11.1). Стык имеет самое высокое сопротивление, т. к. контакт обеспечивается не по всей поверхности, кроме того имеются пленки оксидов и др. загрязнения на торцах. Выделяющаяся теплота зависит от тока сопротивления стыка и времени пропускания тока. Закон Джоуля-Ленца для постоянного тока и сопротивления: Q = I2Rt.
По характеру процесса образования соединения стыковая сварка может быть сваркой сопротивлением или оплавлением.
При сварке сопротивлением нагрев происходит без расплавления торцов, поэтому требуется их тщательная обработка. Таким способом варят низкоуглеродистые, низколегированные стали и алюминиевые сплавы. При этом образуется сварное соединение без расплавления в твёрдом состоянии за счёт пластической деформации.
При стыковой сварке оплавлением не нужно обрабатывать торцы, оксиды и загрязнения выжимаются давлением наружу, можно варить разные материалы с различными сечениями, но при этом изменяются химсостав и структура в месте соединения.
Точечная сварка производится по ограниченным участкам касания, называемым точками (рис. 11.2) Производится при расположении соединяемых деталей внахлест. Для производства сварки детали плотно прижимаются между электродами сварочной машины, а затем разогреваются кратковременным импульсом электрического тока. Импульс должен обеспечивать нагрев до пластического состояния внешних и до плавления внутренних слоев. В результате получается литая сварная точка. Различают точечную одно- и двухстороннюю сварку. Для стали и алюминиевых сплавов толщина соединяемых деталей = 0,5 ... 5 мм. Возможна сварка точек по программе. Производительность в массовом производстве до 1000 точек в минуту.
Рис. 11.1. Схема
контактной сварки:
1 – свариваемые
элементы,
2, 4 – зажимные
устройства,
3 – первичная
обмотка сварочного
трансформатора,
5 – стыковое
соединение
а
б
Рис. 11.2. Схемы
одно-(а) и двусторонней (б)
точечной сварки:
1 – соединяемые
элементы, 2 – медные
электроды, 3 –
зона плавления металла,
4 – источник
питания, 5 – уплотняющий
поясок, 6 –
шунтирующая медная подкладка
Шовная контактная сварка производится контактами, имеющими вид роликов. Она может быть одно- и двухсторонней (рис. 11.3). Скорость перемещения роликов V до 10 м/мин, толщина свариваемых деталей = 0,3 ... 3 мм.
Оборудование для контактной сварки (в одной машине): трансформатор, прерыватель тока, переключатель мощности, механизм давления пневматический или электромеханический. Кроме стационарного оборудования, для точечной сварки применяют различные переносные устройства типа клещей и пистолетов. Основная область их использования – сварка в труднодоступных местах в тонколистовых конструкциях.
Рис. 11.3. Схема
шовной сварки:
1 – дисковые
электроды (ролики),
2 – сварной шов,
3 – источник питания,
4 – соединяемые
элементы
а
б
Рис. 11.4. Схемы
сварки трением:
а – начальный
этап;
б – окончание
процесса сварки
В промышленности применяется также ультразвуковая сварка, когда соединение образуется в результате давления и ультразвуковых колебаний с частотой = 20 ... 30 кГц. Они образуются в результате подачи тока высокой частоты на обмотку магнитострикционного преобразователя, сердечник которого образован пластинами 0,1…0,2 мм. Материал пластин способен изменять свои размеры под действием переменного магнитного тока. Амплитуда колебаний достигает 2 ... 10 мкм. Резонансный волновод специальной формы увеличивает амплитуду до 40 ... 60 мкм. Колебания вызывают продольные перемещения одной из свариваемых деталей и силы трения в месте контакта. Происходит разогрев и сварка. Поверхностная пленка разрушается ультразвуком, следовательно, поверхности не нужно очищать перед сваркой. Температура в зоне контакта для Cu 600 С, Al – 200 ... 300 С. Наиболее рационально применять этот метод для малых толщин = 0,001 ... 1 мм. Можно сваривать разнородные материалы, детали сильно различающихся толщин, металлы с неметаллами. Это обеспечило широкое применение ультразвуковой сварки в приборостроении, радиоэлектронике.
Сварка направленным (кумулятивным) взрывом. Образование соединения происходит в результате соударения верхней (метаемой) части с нижней, при этом достигаются громадные давления 10…20 ГПа. Время образования соединения очень мало (несколько микросекунд), поэтому процессы диффузии отсутствуют. Это позволяет получать композиционные материалы, состоящие из материалов резко отличающихся по свойствам (температуре плавления, коррозионной стойкости и т. д).
Диффузионная сварка в вакууме. Производится путём нагрева до температуры значительно ниже температуры плавления (0,4…0,8 Тпл) и сдавливания 1 ... 20 МПа до возникновения локальной пластической деформации в месте соединения. Время образования соединения зависит от температуры нагрева и при низких температурах может быть значительным (5 ... 20 мин). Соединение образуется без плавления в результате взаимной диффузии в приповерхностных слоях соединяемых деталей. Можно сваривать разнородные материалы. Главным достоинством является неизменность свойств соединяемых материалов и почти полное отсутствие остаточных напряжений, которые могут сильно снижать усталостную прочность конструкций. Этот способ используется при изготовлении космической техники, авиастроении и приборостроении.
Холодная сварка. Соединение образуется за счет совместной пластической деформации при сдавливании пластичных материалов. Величина пластической деформации превышает 30 %. В зависимости от формы получаемого соединения может быть точечной, шовной, контурной, стыковой. Широко используется для сплавов Al, Cd, Pb, Cu, Ni, Au, Ag, Zn. Основным недостатком является необходимость тщательной очистки соединяемых поверхностей оксидных, адсорбированных и органических плёнок. Применяется главным образом в приборостроении.
Контактная и холодная сварка дают надежные соединения, низкую окисляемость металла, уменьшение зоны влияния температуры на металл, высокую производительность, благоприятные санитарно-гигиенические условия труда.
Типы сварных соединений при основных способах сварки плавлением и давлением приведены в табл. 5.