
- •Принятые обозначения и сокращения
- •1. Латинские прописные буквы:
- •2. Греческие буквы:
- •Введение. Некоторые понятия и определения
- •Типы производств
- •Раздел I. Металловедение и термическая обработка
- •Тема 1. Кристаллическое строение и свойства металлов и сплавов
- •1.1. Свойства материалов
- •1.2. Виды деформации
- •1.3. Механические свойства
- •1.4. Технологические свойства
- •Тема 2. Железоуглеродистые сплавы. Термическая и химико-термическая обработка стали
- •2.1. Сплавы
- •Основные компоненты железоуглеродистых сплавов:
- •Структурные составляющие железоуглеродистых сплавов:
- •2.3. Химико-термическая обработка
- •Тема 3. Классификация, маркировка и применение металлов и сплавов
- •3.1. Основные примеси железоуглеродистых сплавов
- •3.2. Классификация сталей
- •3.3. Конструкционные углеродистые стали
- •3.4. Инструментальные углеродистые стали
- •3.5. Конструкционные легированные стали
- •3.6. Инструментальные легированные стали
- •3.7. Стали и сплавы с особыми свойствами
- •3.8. Чугуны
- •3.9. Цветные металлы и сплавы
- •Раздел II. Литейное производство
- •Тема 4. Сущность литья. Литье в разовые песчано-глинистые формы (пгф)
- •4.1. Литье
- •4.2. Основные характеристики и требования к формовочным смесям
- •Стержневые смеси на основе песка
- •4.3. Формовка
- •Тема 5. Плавка чугуна и стали
- •5.1. Литейные свойства сплавов
- •Литейные свойства сплавов
- •5.2. Исходные материалы для плавки
- •5.3. Получение чугуна в доменной печи
- •5.4. Плавка стали
- •Плавка стали в основной дуговой электропечи
- •5.5. Новые способы производства (переплава) стали
- •Тема 6. Специальные способы литья
- •6.1. Литье в оболочковые формы
- •6.2. Литье по выплавляемым моделям
- •6.3. Литье в кокиль (постоянные металлические формы)
- •6.4. Центробежное литье
- •6.5. Литье под давлением
- •Раздел III. Обработка металлов давлением (омд)
- •Тема 7. Сущность обработки металлов давлением. Нагрев металла под омд
- •7.1. Холодная пластическая деформация
- •7.2. Горячая пластическая деформация
- •Температурный интервал омд
- •Тема 8. Получение машиностроительных профилей
- •8.1. Основные виды профилей
- •8.2. Прокатка
- •8.3. Волочение
- •8.4. Прессование
- •Тема 9. Кузнечно-прессовое производство
- •9.1. Исходные материалы
- •9.2. Кузнечно-прессовое оборудование
- •9.3. Свободная ковка ручная и машинная
- •9.4. Объемная холодная и горячая штамповка
- •9.5. Листовая штамповка
- •9.6. Ротационные способы изготовления поковок
- •Раздел IV. Сварочное производство Общие понятия о сварке плавлением и давлением
- •Тема 10. Сварка плавлением (термическая)
- •10.1. Электрическая дуговая сварка
- •10.2 Плазменная сварка
- •10.3 Особые виды электросварки
- •10. 4. Газовая сварка
- •Тема 11. Термомеханическая и механическая сварка
- •11.1. Свариваемость металлов и сплавов
- •11.2. Пайка
- •Раздел V. Механическая обработка заготовок
- •Тема 12. Сущность обработки металлов резанием, металлорежущие станки и инструмент
- •12.1. Параметры режима резания
- •12.2. Обрабатываемость конструкционных материалов
- •12.3. Инструментальные материалы
- •12.4. Классификация металлорежущих станков
- •Тема 13. Технологические процессы механической обработки
- •13.1. Основные технологические методы обработки заготовок деталей машин
- •13.2. Строгание, долбление, протягивание
- •13.3. Обработка отверстий на сверлильных и расточных станках
- •13.4. Фрезерование
- •13.5. Шлифование
- •13.6. Методы отделки поверхностей
- •Раздел VI. Технология электроэрозионной обработки
- •Тема 14. Электрофизические и электрохимические методы обработки
- •14.1. Электроэрозионные методы
- •14.2. Электрохимическая обработка
- •14.3. Анодно-механическая обработка
- •14.4. Химическая обработка
- •14.5. Ультразвуковая обработка
- •14.6. Лучевая обработка
- •Раздел VII. Изготовление деталей из композиционных материалов
- •Тема 15. Изготовление деталей из порошковых материалов
- •15.1. Металлокерамические заготовки и изделия
- •15.2. Композиционные материалы
- •15.3. Технология изготовления деталей
- •Тема 16. Полимерные композиционные материалы – пластмассы и резина
- •16.1. Пластмассы
- •16.2. Классификация полимеров и пластмасс
- •16.3. Типовые термопластичные материалы (термопласты)
- •16.4. Типовые термореактивные материалы (реактопласты)
- •Слоистые армированные реактопласты
- •Пластмассы с листовыми наполнителями
- •16.5. Резиновые материалы
- •Специальные резины
- •Тема 17. Изготовление деталей из пластмасс и резины
- •17.1. Переработка пластмасс в вязкотекучем состоянии
- •17.2. Изготовление деталей из жидких пластиков
- •17.3. Обработка пластмасс резанием
- •17.4. Изготовление резиновых технических изделий
- •18 Лабораторный практикум
- •18.1 Общие методические указания
- •18.2 Лабораторная работа № 1 Тема: Методы определения твердости железоуглеродистых сплавов.
- •Краткие теоретические сведения
- •А) по Бринеллю; б) по Виккерсу; в) по Роквеллу.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов Испытание на приборе Бринелля
- •Результаты испытаний на приборе Бринелля
- •Испытания на приборе Роквелла
- •Результаты испытаний на приборе Роквелла
- •Содержание отчета
- •18.3 Лабораторная работа № 2
- •Краткие теоретические сведения
- •Перечень основного оборудования, контрольно – измерительных приборов и материалов, используемых на занятии
- •Тема: Влияние скорости охлаждения углеродистых сталей на их структуру и твердость.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •От скорости охлаждения (охлаждающей способности среды)
- •Результаты испытаний
- •Содержание отчета
- •Углеродистые качественные конструкционные стали
- •Легированные конструкционные стали
- •Низколегированные строительные стали
- •Подшипниковые стали
- •Углеродистые инструментальные стали
- •Низколегированные инструментальные стали
- •Быстрорежущие стали
- •Медь и ее сплавы
- •Алюминий и его сплавы
- •Магний и его сплавы
- •Титан и его сплавы
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •Результаты испытаний
- •Содержание отчета
- •18.7 Лабораторная работа № 6
- •Краткие теоретические сведения
- •Соотношениях:
- •Образцов.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработки результатов
- •Результаты испытаний
- •Содержание отчета
- •18.8 Лабораторная работа № 7
- •Краткие теоретические сведения
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •Содержание отчета
- •Список рекомендуемой литературы
- •Содержание
- •400131 Волгоград, просп. Им. В. И. Ленина, 28.
- •400131 Волгоград, ул. Советская, 35.
- •403882, Волгоградская обл., г. Камышин, ул. Красная, 14.
5.4. Плавка стали
Плавка стали на машиностроительных заводах производится в электропечах (дуговых или индукционных), в которых можно получать высокую температуру, создавать желаемую атмосферу (окислительную, восстановительную, нейтральную и в редких случаях вакуум). Выплавляют сталь обыкновенного качества, качественную или высококачественную углеродистые стали. При особых требованиях выплавляют низко-, средне- и высоколегированные стали.
Качество стали определяется в основном содержанием вредных примесей (серы и фосфора). Уменьшить их содержание возможно только при основных шлаках, т. е. шлаках, обладающих основными свойствами. Напомним, что для этого используются печи с футеровкой, обладающей основными свойствами. Такие печи и плавильные процессы называются основными.
Плавка стали в основной дуговой электропечи
Дуговая плавильная печь (рис. 5.2): время плавки пл = 4 …8 час., угар 5…8 % от веса металлической шихты, рабочее напряжение Uраб. = 160 … 600 В., ток I = 1 … 10 кА, ёмкость печей 0,5 ... 400 т.
Рис. 5.2. Схема
дуговой плавильной печи:
1 – днище, 2 –
сливной носок, 3 – шихта, 4 – кожух
стальной, 5 – огнеупорный материал,
6 – свод съемный, 7 – гибкие кабели, 8 –
электродержатели, 9 – графитовые
электроды,
10 – рабочее
окно, 11 – поворотный механизм, 12 –
подина
7
6
8
5
9
4
3
2
10
1
11
12
Процесс плавки разделяется на два существенно различающихся периода: окислительный (расплавление и кипение) и восстановительный (рафинирование).
1. Окислительный период. Главная задача окислительного процесса – довести химический состав до требуемого по содержанию углерода, обеспечить вы-равнивание температуры и химсостава по объему металла. После загрузки ши-хты опускаются электроды и включается электрический ток. Расплавление ши-хты происходит под действием дугового разряда. Дуга горит между электродами, на которые подаётся трёхфазный ток, и металлом. Недостатком электродуговых печей является сильный перегрев металла в зоне горения дуги. Температура в этой зоне почти вдвое превышает температуру плавления металла. Это приводит к сильному окислению металла (угару), причём значительное количество оксидов железа теряется в виде бурого дыма, что приводит к загрязнению атмосферного воздуха.
После расплавления и в жидком сплаве происходят процессы окисления, но интенсивность этих процессов много меньше, чем на воздухе. Окисляется прежде всего железо, а затем и примеси. FeO распределяется между металлом и шлаком, растворяясь в них. Таким образом, FeO играет роль передатчика кислорода:
2Fe + O2 = 2FeO + Q,
Mn + FeO = MnO + Fe + Q,
Si + 2FeO = SiO2 + 2Fe + Q.
В конце окислительного периода при t 1400 С начинается окисление С.
При использовании для выплавки стали чугуна (передельного и (или) литейного), углерода после расплавления обычно выделяется значительно больше, чем требуется. Для удаления излишнего углерода добавляют руду, содержащую оксиды железа. В результате происходит окисление углерода по реакции
С + FeO = Fe + CO - Q (эндотермическая реакция). Так как при этом выделяется угарный газ, то внешне это выглядит, как кипение стали. Хотя сталь имеет температуру значительно меньше, чем температура её кипения.
Основные шлаки позволяют в процессе плавления производить удаление вредных примесей (P, S). Дефосфоризация происходит по реакции
2P + 5FeO + 4CaO = (CaO)4P2O5 + 5Fe + Q.
Соединения фосфора, растворяясь, распределяются между металлом и шлаком в определенном соотношении. После двух, трех скачиваний шлака можно обеспечить содержание Р 0,015 %.
В этот же период проводят десульфацию. Наводят «белый» шлак СаО + С (кокс или электродный бой) + СаF2 (плавиковый шпат) в пропорции 12:1:2.
FeS + CaO + C = CaS + Fe + CO - Q.
Степень десульфации до 75 ... 80 %.
2. Восстановительный период. Цель: восстановить Fe из FeO. Оксиды железа при затвердевании стали выпадают из раствора и резко ухудшают прочностные и пластические свойства стали. Поэтому восстановление оксидов является очень важной частью процесса. Раскисление производят ферросплавами, которые могут вводиться в жидкий металл и непосредственно взаимодействовать с ним или погружаться на штанге в шлак. Первый способ называется осаждающим, второй – диффузионным. Наиболее быстрым и потому более дешёвым способом раскисления является осаждающий, но при его длительном использовании ухудшается пластичность и ударная вязкость металла. Это связано с накоплением оксидов в металле за счёт многократного использования при переплаве литниковых систем и литейного брака. Реакции при раскислении:
FeO + Mn = MnO + Fe,
2FeO + Si = SiO2 + 2Fe,
3FeO + 2Al = Al2O3 + 3Fe.
При осаждающем раскислении оксиды Mn, Si, Al большей частью всплывают в шлак. Остающиеся в жидком металле оксиды представляют значительно меньшую опасность по сравнению с FeO, т. к. в меньшей степени снижают пластичность и ударную вязкость, но при длительном использовании этого вида раскисления постепенно происходит ухудшение вязких свойств металла. При диффузионном раскислении реакции происходят в шлаке. В результате действия закона Нернста (см. ниже) уменьшается содержание FeO в жидком металле. В зависимости от длительности второго периода и количества раскислителей получают кипящие, полуспокойные и спокойные стали. Самый короткий восстановительный период у кипящих сталей. При их производстве используют для раскисления только марганец. Так получают низкоуглеродистые стали, которые обладают высокой пластичностью в результате очень малого содержания кремния. При разливке они кипят в изложнице.
Для получения легированных сталей производят легирование. Ферросплавы, содержащие Ni, Co, Mo, Cu, не окисляются, т. к. имеют меньшее сродство с O2, чем Fe. Поэтому их вводят в конце первого периода, чтобы обеспечить равномерное распределение в расплавленном металле. Более активные элементы Si, Mn, Al, Cr, V, Ti вводят в печь после раскисления или перед разливкой в ковш.
Индукционная тигельная плавильная печь (рис. 5.3)
В таких печах можно выплавлять сталь с низким содержанием углерода, т. к. нет науглероживания от графитовых электродов. По сравнению с электродуговыми печами, металл в них в меньшей степени насыщается газами. В основном применяются печи с кислой футеровкой. Нагрев металла производится в результате того, что индуктор печи, представляющий собой водоохлаждаемую катушку, наводит токи индукции в металле шихты или жидком металле. Частота переменного тока в индукторе = 500 ... 2500 1/с. В индукционных печах отсутствует зона перегрева, поэтому угар металла значительно меньше, чем в электродуговых печах. Кроме того, переменное магнитное поле способствует усиленному перемешиванию жидкого металла, что приводит к быстрому выравниванию химического состава жидкого металла. Высокая температура ванны позволяет легировать тугоплавкими элементами. Однако низкая температура шлака затрудняет раскисление и рафинирование металла через шлак.
Шихтой является стальной лом, возврат литейного производства, брикетированная стружка. Для снижения концентрации углерода в жидком металле, по сравнению с его концентрацией в шихте, в качестве окислителей используются железная руда, окалина (FeO). Для последующего удаления оксидов железа применяют раскислители. Флюсы используются для получения шлака заданного состава. Шлаки служат для защиты металла от окисления и удаления вредных примесей. Для легирования применяют легирующие добавки (ферросплавы и лигатуры).
Цель плавки заключается в получении расплавленного металла для отливок требуемого химического состава, прежде всего по углероду и легирующим элементам, а также требуемого качества, прежде всего путем снижения содержания вредных примесей S, Р и газов.
S и P образуют кислые соединения Р2О5, FeS, которые в процессе плавки нейтрализуются основными окислами шлака, главным образом известью CaO. Таким образом, для удаления S и Р нужен основный шлак, а следовательно, и основная печь, т. е. с основной футеровкой.
Рис. 5.3 Схема
индукционной тигельной плавильной
печи:
1 – металл, 2 –
крышка печи, 3 – индуктор, 4 – тигель
1
2
3
4
В основных печах плавку конструкционной стали ведут на углеродистой шихте: стальной лом 90 %, электродный бой или кокс для науглероживания металла и известь (2–3 %). Основный шлак: CaO 40 … 45 %, SiO2 20 … 25 %, FeO 10 … 15 %.
В кислой печи удаление S и P практически невозможно, поэтому нужна чистая по S и P шихта, шлак кислый (55 – 58 % SiO2), условия для раскисления более благоприятные, кремнезем связывает FeO в FeOSiO2:
FeO + SiO2 FeO SiO2.
В кислых печах плавку ведут на шихте из легированных отходов без окисления примесей (переплав).
Процесс плавки базируется на следующих законах:
Закон действующих масс: скорость химических реакций пропорциональна концентрации реагирующих веществ.
Закон распределения Нернста: если вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, например, металл и шлак, то распределение вещества между ними происходит до установления определенного соотношения – константы распределения, постоянного для данной температуры. Следовательно, изменяя состав шлака, можно направленно изменять распределение примесей в шлаке и металле. Периодически скачивая шлак, можно эффективно удалять примеси из жидкого металла.
Принцип Ле Шателье: всякая система, находящаяся в состоянии равновесия, стремится сохранить это равновесие. При любом изменении извне факторов равновесия (температуры, давления, концентрации) внутри системы возникают процессы, противодействующие этому изменению. Следовательно, изменяя внешние факторы, в данном случае концентрацию компонентов и температуру, можно обеспечить развитие обратимых реакций в нужном направлении.
Способы улучшения качества стали
Вакуумная обработка (дегазация) стали в ковше. Разрежение до Р = 0,267 … 0,667 кПа способствует удалению почти всех растворённых в металле газов.
Разливка в инертной атмосфере уменьшает окисляемость металла.
Выдержка и разливка под слоем специального основного шлака: 53 … 55 % СаО; 43 … 45 % Al2O3; 3 % SiO2; 1 % FeO. Она обеспечивает частичное удаление вредных примесей.