
- •Принятые обозначения и сокращения
- •1. Латинские прописные буквы:
- •2. Греческие буквы:
- •Введение. Некоторые понятия и определения
- •Типы производств
- •Раздел I. Металловедение и термическая обработка
- •Тема 1. Кристаллическое строение и свойства металлов и сплавов
- •1.1. Свойства материалов
- •1.2. Виды деформации
- •1.3. Механические свойства
- •1.4. Технологические свойства
- •Тема 2. Железоуглеродистые сплавы. Термическая и химико-термическая обработка стали
- •2.1. Сплавы
- •Основные компоненты железоуглеродистых сплавов:
- •Структурные составляющие железоуглеродистых сплавов:
- •2.3. Химико-термическая обработка
- •Тема 3. Классификация, маркировка и применение металлов и сплавов
- •3.1. Основные примеси железоуглеродистых сплавов
- •3.2. Классификация сталей
- •3.3. Конструкционные углеродистые стали
- •3.4. Инструментальные углеродистые стали
- •3.5. Конструкционные легированные стали
- •3.6. Инструментальные легированные стали
- •3.7. Стали и сплавы с особыми свойствами
- •3.8. Чугуны
- •3.9. Цветные металлы и сплавы
- •Раздел II. Литейное производство
- •Тема 4. Сущность литья. Литье в разовые песчано-глинистые формы (пгф)
- •4.1. Литье
- •4.2. Основные характеристики и требования к формовочным смесям
- •Стержневые смеси на основе песка
- •4.3. Формовка
- •Тема 5. Плавка чугуна и стали
- •5.1. Литейные свойства сплавов
- •Литейные свойства сплавов
- •5.2. Исходные материалы для плавки
- •5.3. Получение чугуна в доменной печи
- •5.4. Плавка стали
- •Плавка стали в основной дуговой электропечи
- •5.5. Новые способы производства (переплава) стали
- •Тема 6. Специальные способы литья
- •6.1. Литье в оболочковые формы
- •6.2. Литье по выплавляемым моделям
- •6.3. Литье в кокиль (постоянные металлические формы)
- •6.4. Центробежное литье
- •6.5. Литье под давлением
- •Раздел III. Обработка металлов давлением (омд)
- •Тема 7. Сущность обработки металлов давлением. Нагрев металла под омд
- •7.1. Холодная пластическая деформация
- •7.2. Горячая пластическая деформация
- •Температурный интервал омд
- •Тема 8. Получение машиностроительных профилей
- •8.1. Основные виды профилей
- •8.2. Прокатка
- •8.3. Волочение
- •8.4. Прессование
- •Тема 9. Кузнечно-прессовое производство
- •9.1. Исходные материалы
- •9.2. Кузнечно-прессовое оборудование
- •9.3. Свободная ковка ручная и машинная
- •9.4. Объемная холодная и горячая штамповка
- •9.5. Листовая штамповка
- •9.6. Ротационные способы изготовления поковок
- •Раздел IV. Сварочное производство Общие понятия о сварке плавлением и давлением
- •Тема 10. Сварка плавлением (термическая)
- •10.1. Электрическая дуговая сварка
- •10.2 Плазменная сварка
- •10.3 Особые виды электросварки
- •10. 4. Газовая сварка
- •Тема 11. Термомеханическая и механическая сварка
- •11.1. Свариваемость металлов и сплавов
- •11.2. Пайка
- •Раздел V. Механическая обработка заготовок
- •Тема 12. Сущность обработки металлов резанием, металлорежущие станки и инструмент
- •12.1. Параметры режима резания
- •12.2. Обрабатываемость конструкционных материалов
- •12.3. Инструментальные материалы
- •12.4. Классификация металлорежущих станков
- •Тема 13. Технологические процессы механической обработки
- •13.1. Основные технологические методы обработки заготовок деталей машин
- •13.2. Строгание, долбление, протягивание
- •13.3. Обработка отверстий на сверлильных и расточных станках
- •13.4. Фрезерование
- •13.5. Шлифование
- •13.6. Методы отделки поверхностей
- •Раздел VI. Технология электроэрозионной обработки
- •Тема 14. Электрофизические и электрохимические методы обработки
- •14.1. Электроэрозионные методы
- •14.2. Электрохимическая обработка
- •14.3. Анодно-механическая обработка
- •14.4. Химическая обработка
- •14.5. Ультразвуковая обработка
- •14.6. Лучевая обработка
- •Раздел VII. Изготовление деталей из композиционных материалов
- •Тема 15. Изготовление деталей из порошковых материалов
- •15.1. Металлокерамические заготовки и изделия
- •15.2. Композиционные материалы
- •15.3. Технология изготовления деталей
- •Тема 16. Полимерные композиционные материалы – пластмассы и резина
- •16.1. Пластмассы
- •16.2. Классификация полимеров и пластмасс
- •16.3. Типовые термопластичные материалы (термопласты)
- •16.4. Типовые термореактивные материалы (реактопласты)
- •Слоистые армированные реактопласты
- •Пластмассы с листовыми наполнителями
- •16.5. Резиновые материалы
- •Специальные резины
- •Тема 17. Изготовление деталей из пластмасс и резины
- •17.1. Переработка пластмасс в вязкотекучем состоянии
- •17.2. Изготовление деталей из жидких пластиков
- •17.3. Обработка пластмасс резанием
- •17.4. Изготовление резиновых технических изделий
- •18 Лабораторный практикум
- •18.1 Общие методические указания
- •18.2 Лабораторная работа № 1 Тема: Методы определения твердости железоуглеродистых сплавов.
- •Краткие теоретические сведения
- •А) по Бринеллю; б) по Виккерсу; в) по Роквеллу.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов Испытание на приборе Бринелля
- •Результаты испытаний на приборе Бринелля
- •Испытания на приборе Роквелла
- •Результаты испытаний на приборе Роквелла
- •Содержание отчета
- •18.3 Лабораторная работа № 2
- •Краткие теоретические сведения
- •Перечень основного оборудования, контрольно – измерительных приборов и материалов, используемых на занятии
- •Тема: Влияние скорости охлаждения углеродистых сталей на их структуру и твердость.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •От скорости охлаждения (охлаждающей способности среды)
- •Результаты испытаний
- •Содержание отчета
- •Углеродистые качественные конструкционные стали
- •Легированные конструкционные стали
- •Низколегированные строительные стали
- •Подшипниковые стали
- •Углеродистые инструментальные стали
- •Низколегированные инструментальные стали
- •Быстрорежущие стали
- •Медь и ее сплавы
- •Алюминий и его сплавы
- •Магний и его сплавы
- •Титан и его сплавы
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •Результаты испытаний
- •Содержание отчета
- •18.7 Лабораторная работа № 6
- •Краткие теоретические сведения
- •Соотношениях:
- •Образцов.
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработки результатов
- •Результаты испытаний
- •Содержание отчета
- •18.8 Лабораторная работа № 7
- •Краткие теоретические сведения
- •Перечень основного оборудования, контрольно-измерительных приборов и материалов, используемых на занятии
- •Порядок выполнения работы и обработка результатов
- •Содержание отчета
- •Список рекомендуемой литературы
- •Содержание
- •400131 Волгоград, просп. Им. В. И. Ленина, 28.
- •400131 Волгоград, ул. Советская, 35.
- •403882, Волгоградская обл., г. Камышин, ул. Красная, 14.
3.9. Цветные металлы и сплавы
(примеры материалов и их применения)
Алюминий – легкий металл, = 2700 кг/м3, tпл = 658 С, после прокатки и отжига в = 58 МПа, = 40 %. Высокая пластичность, невысокая прочность, хорошая свариваемость, коррозионная стойкость, на воздухе не окисляется за счет оксидной пленки, высокая электро- и теплопроводность.
Деформируемые термически не упрочняемые сплавы систем Al-Mn(AМц), Al-Mg(АМг).
Деформируемые термически упрочняемые сплавы систем Al-Cu-Mg: дуралюмины Д16 … Д18 и силумины АК6 … АК8, после ТО – высокая пластичность и прочность.
Литейные сплавы с 10 … 13 % Si – АЛ2, АЛ4, АЛ9 – применяются наиболее широко.
Сплавы с медью и марганцем АЛ7, АЛ19 обладают повышенной прочностью.
Сплавы с магнием Mg = 9,5 … 11,5 %, АЛ8, АЛ13 имеют хорошую коррозионную стойкость.
Алюминий применяют также для приготовления спеченных алюминиевых сплавов (САС) и алюминиевых пудр (САП), обладающих коррозионной стойкостью, прочностью или пористостью.
Магний – легкий металл, = 1740 кг/м3, tпл = 651 С, на воздухе окисляется, хорошо сваривается и обрабатывается резанием, после прокатки и отжига в = 180 МПа; = 15 %.
Деформируемые неупрочняемые ТО сплавы – МА2, МА8.
Высокопрочные, упрочняемые ТО – МА5.
Жаропрочные с добавками циркония, никеля и др. литейные сплавы МЛ6, МЛ3 имеют невысокий модуль упругости (Е = 4300 МПа) и вследствие этого хорошие демпфирующие свойства (гасят колебания конструкции), но низкую коррозионную стойкость, поэтому отливки оксидируют, покрывают лаком и т. д.
Магний химически активен к кислороду, поэтому применяется в качестве раскислителя при плавке стали и цветных металлов, при получении трудно восстанавливаемых металлов (Ti, V, циркония, урана и др.), для получения высокопрочного модифицированного чугуна. В химической промышленности Mg применяется для обезвоживания органических веществ (спирта, анилина и др.), в порошкообразном виде и в виде ленты горит ослепительно белым пламенем (фотовспышка, пиротехника, ракеты и зажигательные бомбы). Сплавы магния хорошо поглощают вибрации, немагнитны, не дают искры при трении и ударах. Удельная жесткость при изгибе и кручении у них на 20 % выше, чем у алюминиевых сплавов и на 50 %, чем у стали, удельная вибрационная прочность в 100 раз больше, чем у дуралюмина и в 20 раз больше, чем у легированной стали. Стружка и пыль магния взрывоопасны.
Медь: = 8900 кг/м3, tпл = 1083 С, высокая тепло- и электропроводность, пластичность, хорошая коррозионная стойкость, жидкотекучесть, ковкость, свариваемость. Чистая медь: В = 250 ... 270 МПа, = 40 ... 50 %. Примеси ухудшают качество меди, особенно сера и кислород, образующие соединения Cu2S и Cu2O.
Латуни – основной легирующий компонент – цинк. Латуни деформируемые – Л96, Л59. Литейные латуни – ЛАЖМц 66-6-3-2. Указан состав меди и др. элементов, остальное – цинк.
Бронзы – сплавы меди с оловом (4 … 33 %), свинцом (до 30 %), Al (5 … 11 %), Si (4 … 5 %), сурьмой и фосфором. Имеют высокую антифрикционность (стойкость против истирания за счет низкого коэффициента трения), малую усадку, хорошую жидкотекучесть, высокую химическую стойкость.
Литейные оловянистые бронзы – БрОЦС5-5-5 и безоловянистые – БрАЖН10-4-4 (алюминиевые), БрБ2 (бериллиевая – для пружин), БрС30 (свинцовистая – для подшипников).
Деформируемые бронзы – БрАЖ9-4.
Медноникелевые сплавы специальные, например, мельхиор, константан.
Титан: = 4500 кг/м3, tпл .= 1672 С, на воздухе коррозионно стоек за счет
оксидной пленки TiO2, легкий, прочный, тугоплавкий, хорошо обрабатывается давлением в холодном и горячем состоянии и сваривается, но плохо обрабатывается резанием (вязок). Чем чище по примесям, тем ниже прочность и выше пластичность.
Сплавы ВТ4, ВТ18 и др. легированные, в основном Al, термически не упрочняются, после ОМД подвергают отжигу, В = 650 ... 880 МПа; = 15 ... 40 %.
ВТ6, ВТ14 и др. содержат Al, W, Mo, более высокая прочность за счет закалки и старения: В = 800 ... 1150 МПа; = 8 ... 15 %.
Титановые сплавы применяются в химической промышленности, авиации, судостроении, медицине, пищевой промышленности, в криогенной технике (аммиачные компрессоры, холодильные установки, емкости для хранения жидких газов).
Подшипниковые сплавы и материалы (антифрикционные).
К этим материалам предъявляется ряд требований, обеспечивающих наилучший режим эксплуатации для опор подшипников скольжения: низкий коэффициент трения, хорошая прирабатываемость, высокая теплопроводность и теплоемкость, способность удерживать смазку, малая способность к «схватыванию», устойчивость против коррозии.
В основном используются металлические сплавы на основе легкоплавких металлов Sn, Pb, Zn, Al (баббиты), а также некоторые бронзы и антифрикционные чугуны. Баббиты обладают неоднородной структурой (мягкая основа с твердыми включениями), что обеспечивает быструю приработку, высокую сопротивляемость износу и сеть микроскопических каналов для смазки. Например, баббиты оловянно-сурьмянистые Б83 и Б89. Основа – олово, 7,25 … 10 % Sb и 2,5 … 6,5 % Cu, tпл. = 380 и 342 С.
Коэффициент трения подшипниковых сплавов f = 0,005 … 0,009.