
- •Частина III. Динаміка Лекція 21 основні закони динаміки
- •21.1. Чотири закони класичної механіки
- •21.2. Динамічні рівняння руху матеріальної точки в декартових координатах та в натуральній формі
- •Лекція 22 дві основні задачі динаміки матеріальної точки
- •22.1. Пряма або перша основна задача
- •22.2. Обернена, або друга, основна задача
- •План розв’язування другої ( оберненої) задачі динаміки точки:
- •22.3. Приклади розв’язання оберненої задачі динаміки матеріальної точки
- •1 . Прямолінійний рух.
- •2. Криволінійний рух.
- •Запишемо диференціальне рівняння руху матеріальної точки
- •Лекція 23 динаміка відносного руху матеріальної точки
- •23.1. Диференціальні рівняння відносного руху матеріальної точки
- •23.3. Випадок відносного спокою. Сила ваги
- •23.4. Приклади розв’язування задач динаміки відносного руху матеріальної точки
- •Запишемо векторне рівняння відносно руху точки :
- •Лекція 24 Загальні відомості про механічну систему. Моменти інерції тіл
- •24.1. Класифікація і властивості сил, що діють на механічну систему
- •1. Головний вектор всіх внутрішніх сил механічної системи дорівнює нулю:
- •2. Головний вектор-момент всіх внутрішніх сил механічної системи відносно довільного нерухомого центра дорівнює нулю:
- •24.2. Центр мас механічної системи і його положення.
- •24.3. Момент інерції твердого тіла, що обертається навколо нерухомої осі. Радіус інерції.
- •24.4. Теорема про моменти інерції тіла відносно паралельних осей:
- •24.5. Приклади визначення моментів інерції тіл канонічної форми
- •4 . Момент інерції .Кулі
- •6. Момент інерції однорідної правильної прямокутної піраміди.
- •6. Моменти інерції прямокутного паралелепіпеда:
- •Лекція 25 рух центру мас механічної системи. Кількість руху матеріальної точки. Головний вектор кількості руху механічної системи
- •25.1. Теорема про рух центра мас механічної системи
- •25.2. Імпульс сили та його проекції на координатні осі
- •Отже, проекція імпульсу сили на вісь дорівнює імпульсу проекції сили на цю вісь . Модуль і напрям імпульсу сили визначається за формулами:
- •25.3. Теорема про зміну кількості руху матеріальної точки.
- •25.4 Теорема про зміну головного вектора кількості руху механічної системи
- •25.5. Приклади розв’язання задач
- •Звідки, після нескладних перетворень дістанемо:
- •Лекція 26 момент кількості руху матеріальної точки
- •26.1. Момент кількості руху матеріальної точки відносно центра і осі
- •26.2. Теорема про зміну моменту кількості руху матеріальної точки:
- •26.3. Рух матеріальної точки під дією центральної сили. Закон площин
- •Лекція 27 кінетичний момент механічної системи
- •27.1 Головний момент кількості руху механічної системи або кінетичний момент механічної системи відносно центра та відносно осі
- •27.2. Кінетичний момент тіла, що обертається навколо нерухомої осі, відносно цієї осі
- •27.3. Теорема про зміну кінетичного моменту механічної системи.
- •27.4 . Збереження кінетичного моменту механічної системи
- •27.5. Приклад розв’язання задачі
- •Робота сили та кінетична енергія матеріальної точки матеріальної системи Лекція 28 Робота сили та її Потужність
- •28.1. Формули визначення роботи сили та її потужності потужності
- •28.2. Теорема про роботу рівнодійної:
- •28.3. Теорема про роботу внутрішніх сил незмінної системи
- •28.4. Робота сили ваги
- •28.5. Робота сили пружності на скінченому прямолінійному переміщенні
- •2 8.6. Робота і потужність сили, прикладеної до твердого тіла, що обертається навколо нерухомої осі
- •29.1. Теорема про зміну кінетичної енергії матеріальної точки
- •29.2. Закон збереження повної механічної енергії матеріальної точки при дії на неї потенціальних сил:
- •29.3. Теорема про зміну кінетичної енергії механічної системи
- •29.4. Обчислення кінетичної енергії механічної системи в залежності від виду її руху
- •30.1. Диференціальні рівняння поступального руху твердого тіла
- •30.2. Диференціальне рівняння обертального руху твердого тіла навколо нерухомої осі
- •30.3. Фізичний маятник та його малі коливання.
- •Обмежимося розглядом малих коливань фізичного маятника, для яких . Тоді рівняння (30.6) набуде вигляду:
- •30.5. Експериментальне визначення моментів інерції тіл
- •30.5. Диференціальні рівняння плоскопаралельного руху твердого тіла.
- •30.7. Приклади розв’язання задач
- •Лекція 31 принцип д’аламбера. Головний вектор і головний момент сил інерції
- •31.1. Принцип д’Аламбера для матеріальної точки
- •31.2. Принцип д’Аламбера для механічної системи
- •31.3. Головний вектор і головний момент сил інерції
- •Лекція 32 застосування принципу д’аламбера
- •32.1. Зведення сил інерції точок твердого тіла до найпростішого вигляду при поступальному, обертальному та плоскопаралельному русі
- •32.2. Визначення додаткових динамічних реакцій при русі зв’язаної механічної системи.
- •32.3. Приклад визначення додаткових динамічних реакцій підшипників при обертальному русі механічної системи навколо нерухомої осі
26.1. Момент кількості руху матеріальної точки відносно центра і осі
Момент
кількості руху матеріальної точки
відносно
центра
визначається
так само, як і момент сили
.
Момент
кількості руху матеріальної точки
відносно нерухомого центра
дорівнює векторному добутку радіуса-вектора
точки
і вектора кількості руху точки
(рис. 26.1):
.
(26.1)
За
модулем:
.
Отже,
моментом кількості руху матеріальної
точки відносно деякого центра називається
вектор
який дорівнює за модулем добутку модуля
кількості руху точки
на плече d
і має напрям перпендикулярний до площини,
яка проходить через вектор
і центр О
в
той бік,
звідки вектор
відносно центра
О видно
спрямованим проти руху годинникової
стрілки
(рис. 26.1).
Величина момента кількості руху матеріальної точки відносно деякої осі, наприклад , записуються аналогічно відповідному виразу для момента сили (рис. 26.2):
;
(26.2)
Аналогічно запишемо таку залежність:
.
(26.3)
Отже, проекція вектор-моменту кількості руху матеріальної точки відносно деякого центра на вісь, яка проходить через цей центр, дорівнює моменту кількості руху точки відносно цієї осі.
Проектуючи вектор момент кількості руху точки відносно центра (26.1) на осі прямокутної декартової системи координат, отримаємо вирази для обчислення моментів кількості руху матеріальної точки відносно координатних осей:
;
;
.
(26.4)
26.2. Теорема про зміну моменту кількості руху матеріальної точки:
Векторна похідна за часом від моменту кількості руху матеріальної точки відносно деякого центра дорівнює вектору-моменту сили, прикладеної до цієї точки, відносно того самого центра.
Д
оведення.
Нехай матеріальна точка
масою
рухається
зі
швидкістю
під дією
сили
(рис. 26.3).
Момент кількості руху даної матеріальної точки відносно нерухомого центра визначається за формулою (26.1):
.
Знайдемо першу похідну за часом від останнього виразу
.
(26.5)
Тут
,
як векторний добуток двох колінеарних
векторів.
Остаточно маємо:
.
(26.6)
Рівність (26.6) визначає доведену теорему про зміну моменту кількості руху матеріальної точки відносно нерухомого центра.
Проектуючи обидві частини рівняння (26.6) на координатні осі, дістаємо:
,
,
.
(26.7)
Отже, перша похідна за часом від моменту кількості руху матеріальної точки відносно деякої осі дорівнює моменту сили, прикладеної до точки, відносно тієї самої осі.
Наслідки з теореми:
1. Якщо момент сили, прикладеної до точки, відносно деякого центра за весь час руху дорівнює нулю, то вектор-момент кількості руху матеріальної точки відносно того самого центра є векторною сталою величиною:
;
;
.
(26.8)
2. Якщо момент сили, прикладеної до точки, відносно деякої осі, наприклад за весь час руху дорівнює нулю, то момент кількості руху матеріальної точки відносно тієї самої осі є сталою величиною:
;
;
.
(26.9)