
- •Глава 1. Витамины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Качественное определение
- •§ 4. Количественное определение
- •Аскорбиновая 2, 6-дихлорфенолиндофенол кислота
- •§ 1. Классификация
- •Бисаболен
- •-Герма кран
- •§ 2. Физико-химические свойства
- •§ 3. Методы получения
- •§ 4. Анализ растительного сырья
- •Рио. 1. Прибор для определения эфирного масла в растительном сырье по методу 1 гф X:
- •§ 5. Анализ эфирного масла
- •Рив. 5. Хрома- тограмма эфирного масла эвкалипта:
- •Глава 3. Сердечные гликозиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 4. Сапонины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 5. Фенологликозиды и флороглюциды
- •§ 1. Классификация
- •§ 2. Физпко-химнчеекпе свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •§ 6. Классификация
- •§ 8. Методы выделения и идентификация
- •§ 9. Качественное определение
- •Глава 6. Антраценпроизводные и их гликозиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 7. Флавоноиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 8. Кумарины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 9. Дубильные вещества
- •§ 1. Классификация
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 10. Алкалоиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение и идентификация
- •Рио. 28. Уф спектр морфина
- •§ 5. Количественное определение
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 12. Экстрактивные вещества, влага, зола § 1. Определение экстрактивных веществ
- •§ 2. Определение влаги в лекарственном растительном сырье
- •§ 3. Определение золы в лекарственном растительном сырье
- •1 Определение оптической плотности окрашенного раствора можно проводить на фотоколориметре фэк-56м при зеленом светофильтре (длина волны 540 нм).
Глава 9. Дубильные вещества
Дубильными веществами называют растительные полифеноль- ные соединения различной молекулярной массы, способные дубить кожу. В настоящее время из растений выделены также многочисленные низкомолекулярные полиоксифенольные соединения, не обладающие дубящим действием, но являющиеся биогенетическими предшественниками дубильных веществ.
Термин «дубильные вещества» был впервые использован в 1796 г. французским исследователем Сегеном для обозначения присутствующих в экстрактах некоторых растений веществ, способных осуществлять процесс дубления. Практические вопросы кожевенной промышленности в середине прошлого века положили начало изучению химии дубильных веществ.
§ 1. Классификация
По классификации Г. Проктера (1894) дубильные вещества в зависимости от природы продуктов их разложения при температуре 180—200 °С (без доступа воздуха) разделяются на две основные группы: 1) пирогалловые (дают при разложении пирогаллол); 2) пирокатехиновые (образуется пирокатехин):
ОН ОН
I I
НО—ОН
V
пирогаллол пирокатехин
В результате дальнейшего исследования химизма танидов К. Фрейденберг уточнил классификацию Проктера и рекомендовал обозначить первую группу (пирогалловые дубильные вещества) как гидролизуемые дубильные вещества, а вторую (пирокатехиновые дубильные вещества) — конденсированные.
Большинство дубильных веществ растений невозможно однозначно отнести к типу гидролизуемых или конденсированных, поскольку эти группы во многих случаях недостаточно резко разграничены. В растениях часто содержится смесь дубильных веществ обеих групп.
В настоящее время наиболее часто пользуются классификацией Фрейденберга:
Гидролизуемые дубильные вещества: а) галлотанины — эфи- ры галловой кислоты и Сахаров; б) несахаридные эфиры фенолкар- боновых кислот; в) эллаготанины — эфиры эллаговой кислоты и Сахаров.
Конденсированные дубильные вещества: а) производные флаванолов — 3; б) производные флавандиолов—3, 4; в) производные оксистильбенов.
Гидроли*емые дубильные вещества. Представляют собой сложные эфиры сахаридов и фенолкарбоновых кислот, которые в услови
ях кислотного или энзиматического гидролиза распадаются на простейшие составные части. Дубильные вещества группы галло- танинов наряду с сахаридом образуют галловую кислоту, а эллаго- танины — гексаоксидифеновую кислоту, или такую кислоту, которая может образоваться из галловой кислоты простыми химическими превращениями (окисление, восстановление).
Галлотанины — эфиры галловой кислоты, наиболее важные в группе гидролизуемых дубильных веществ. Встречаются моно-, ди-, три-, тетра-, пента- и полигаллоильные эфиры.
Представителем моногаллоильных эфиров является P-D-глю- когаллин, выделенный из корня китайского ревеня и обнаруженный также в других растениях:
н
он
Важнейшие источники галлотанинов: галлы — наросты на листьях сумаха полукрылатого (китайский танин), ветках дуба лузитан- ского (турецкий танин); листья сумаха дубильного и скумпии кожевенной и др.
Изучение структуры китайского танина проводилось на протяжении многих'лет. Э. Фишер предложил для него строение jJ-пента- м-дигаллоил-О-глюкозы. Все гидроксильные группы глюкозы эте- рифицированы лс-дигалловой кислотой. Фишер допускал, что китайский танин содержит не только остатки дигаллоил, но и три-, и тетрагаллоила. П. Каррер (1923) первый обнаружил, что китайский танин представляет собой гетерогенную смесь веществ различного строения:
о /ОН
китаискии
танин л л
(ОДИН
ИЗ ВОЗМОЖНЫХ
О П Г
—// Ч ,'лтг
пзмляи-гглоЧ
В л / V U
V
\ /
П
CH,OR,
вариантов) R2
//
—
—с—//~он
О
—чон
/ОН
•он
он
о , /О»
о / \-ОН
р-пента-м-дигапои!- || Г/ л w ^ Ч /
2 -глюкоза (китаискии танин ц г.—г—О—С—(' у—ОН
ж, Э.Фишеру) щ у_он
он
Для турецкого танина многие исследователи принимали строение |3-пента-.0-галлоил-0-глюкозы. Фишер и Фрейденберг доказали
наличие в турецком танине небольшого количества эллаговой кислоты. Позднее Фрейденберг суммировал все представления о строении турецкого танина и предположил, что в среднем одна из пяти гидроксильных групп глюкозы свободна, другая — этерифициро- вана ле-дигалловой, а остальные — галловой кислотой.
Доказана идентичность строения китайского танина и танина сумаха, которые представляют собой окта- или нонагаллоилглюкозу в отличие от турецкого танина, являющегося гекса- или гептагал- лоилглюкозой.
Танин (галлотанин) используется как вяжущее средство при ожогах и желудочно-кишечных заболеваниях, а также для мягкого дубления.
НОч
уСООН
теогаллин
н/\эн
Таратанин,
выделенный из спиртового экстракта
дубильных веществ
Caesalpinia
spinosa,
представляет
собой галлотанин, в состав которого
входит не сахарид, а хинная кислота.
Эфиры хинной, n-кумароилхинной,
хлорогеновой, шикимовой, оксикоричной
и кофейной кислот очень широко
распространены в растительном мире.
Эллаговые
дубильные вещества.
Значительно сложнее по строению,
чем галловые. Их сырьевыми источниками
служат тропические растения — плоды
терминалии хебула, цезальпинии дубильной
и другие, а также корка гранатника.
Эллаговая кислота обнаружена в
гидролизатах экстрактов двудольных
растений (примерно 75 семейств), что
свидетельствует о широком распространении
эллаговых дубильных веществ. В растениях
содержится гексаокси- дифеновая кислота
(продукт окисления галловой кислоты),
которая переходит в эллаговую кислоту:
гексаоксидифеновая
кислота
эллаговая
кислота
Кроме эллаговой кислоты при расщеплении эллаготанинов образуются и другие соединения, как, например, бревифолинкарбо- новая (выделена из альгарабиллы), хебуловая кислоты и др.
О
\
0 со,н
но/тХ
НО Н СН—сн2—со2н с:о2н
хебуловая кислота
Конденсированные дубильные вещества. Не расщепляются при действии минеральных кислот, а образуют красшжоричневые продукты конденсации, называемые флабофенами. Кроме того, из растений выделен также ряд мономерных полиоксифенолов биогенетических предшественников конденсированных дубильных веществ. Такие соединения катехинового типа выделены, например, из листьев чая китайского и некоторых других растений.
а-l-катехии лейкоцианидин
Одно из первых химических исследований конденсированных дубильных веществ было проведено И. Берцелиусом в 1827 г. Систематические исследования химии конденсированных дубильных веществ были начаты лишь в 20-е годы нашего столетия Фрейден- бергом с сотр. Несмотря на успехи органической химии и химии полимеров, строение конденсированных дубильных веществ до сих пор во многом остается неясным.
На основании модельных опытов Фрейденберг пришел к выводу, что образование конденсированных дубильных веществ происходит в результате окислительной конденсации катехинов. При этом пирановое ядро катехиновой молекулы разрывается и С2-атом соединяется углерод-углеродной связью с Qj-атомом
другой
молекулы:
Исследования последнего десятилетия показали, что многие конденсированные дубильные вещества представляют собой смешанные полимеры, построенные на основе катехина и лейкоантоциани- дина:
ОН
К числу растений, содержащих конденсированные дубильные вещества, относятся: зверобой, черника, чай китайский.
Чаще всего в растениях встречается смесь гидролизуемых и конденсированных дубильных веществ с преобладанием соединений той или иной группы (дуб черешчатый, змеевик, кровохлебка, бадан толстолистный, лапчатка прямостоячая и др.).
§ -2. Физико-химические свойства
Дубильные вещества (таниды) имеют среднюю молекулярную массу порядка 1000—5000 (до 20 000) и представляют собой, как правило, аморфные соединения, образующие при растворении в воде
коллоидные растворы. Из органических растворителей таниды растворимы в ацетоне, этиловом спирте, смеси этилового спирта и этилового эфира, отчасти в этиловом эфире, этилацетате, пиридине; нерастворимы в хлороформе, петролейном эфире, бензоле и сероуглероде. Многие дубильные вещества оптически активны; обладают вяжущим вкусом, легко окисляются на воздухе, приобретая более или менее темную окраску.
Катехины — бесцветные кристаллические вещества, хорошо растворимые в воде и органических растворителях (спирты, ацетон и т. д.). Они легко окисляются при нагревании и на свету. Окисление катехинов особенно быстро протекает в щелочной среде, а также при действии окислительных ферментов (полифенолоксидаза, перо- ксидаза).
Молекула катехина содержит два асимметричных атома углерода (С2 и С3), и поэтому каждый из катехинов может быть представлен четырьмя изомерами и двумя рацематами. В зависимости от конфигурации кольца В и гидроксильной группы у С3-атома различают (±)-катехины и (±)-эпикатехины. В растениях катехины встречаются в изомерных формах, соответствующих (+)-катехину и (—)-эпикатехину. Для УФ спектра катехинов характерен основной максимум поглощения в области 270—280 нм.
Лейкоантоцианиды — бесцветные аморфные вещества, окисляющиеся легче, чем катехины. Они растворимы в воде, этаноле, ацетоне, хуже в этилацетате, нерастворимы в этиловом эфире. Лейкоантоцианидины содержат три асимметричных атома углерода (С«, С3, С4), и поэтому каждый из лейкоантоцианидинов может быть представлен восемью изомерами и четырьмя рацематами. В УФ спектре лейкоантоцианидинов имеется максимум поглощения в области 270—280 нм. При нагревании с разбавленными кислотами лейкоантоцианидины превращаются в ярко окрашенные антоцианы.
ОН
J»
ofV
Свободная эллаговая кислота дает красно-фиолетовую окраску при добавлении нескольких кристаллов нитрита натрия и трех-четы- рех капель уксусной кислоты. Для обнаружения связанной элла- говой кислоты (или гексаоксидифеновой) уксусную кислоту заменяют 0,1 н. серной или соляной кислотой (кармино-красная окраска, переходящая в синюю).