- •Глава 1. Витамины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Качественное определение
- •§ 4. Количественное определение
- •Аскорбиновая 2, 6-дихлорфенолиндофенол кислота
- •§ 1. Классификация
- •Бисаболен
- •-Герма кран
- •§ 2. Физико-химические свойства
- •§ 3. Методы получения
- •§ 4. Анализ растительного сырья
- •Рио. 1. Прибор для определения эфирного масла в растительном сырье по методу 1 гф X:
- •§ 5. Анализ эфирного масла
- •Рив. 5. Хрома- тограмма эфирного масла эвкалипта:
- •Глава 3. Сердечные гликозиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 4. Сапонины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 5. Фенологликозиды и флороглюциды
- •§ 1. Классификация
- •§ 2. Физпко-химнчеекпе свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •§ 6. Классификация
- •§ 8. Методы выделения и идентификация
- •§ 9. Качественное определение
- •Глава 6. Антраценпроизводные и их гликозиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 7. Флавоноиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 8. Кумарины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 9. Дубильные вещества
- •§ 1. Классификация
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 10. Алкалоиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение и идентификация
- •Рио. 28. Уф спектр морфина
- •§ 5. Количественное определение
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 12. Экстрактивные вещества, влага, зола § 1. Определение экстрактивных веществ
- •§ 2. Определение влаги в лекарственном растительном сырье
- •§ 3. Определение золы в лекарственном растительном сырье
- •1 Определение оптической плотности окрашенного раствора можно проводить на фотоколориметре фэк-56м при зеленом светофильтре (длина волны 540 нм).
§ 2. Физико-химические свойства
В чистом виде флаваноиды представляют собой кристаллические соединения с определенной температурой плавления, желтые (флавоны, флавонолы, халконы и др.), бесцветные (изофлавоны, Катехины, флаваноны, флаванонолы), а также окрашенные в красный или синий цвет (антоцианы) в зависимости от рН среда. В кис? лой среде они имеют оттенки красного или розового цветов; в ще« лочной — синего.
Агликоны флавоноидов растворяются в этиловом эфире, ацетоне, спиртах, практическинерастворимы в воде. Гликозиды флавоноидов, содержащие более трех остатков сахара, растворяются в водеь но нерастворимы в эфире и хлороформе.
Агликоны и гликозиды флаваноидов лишены запаха; некоторые из них обладают горьким вкусом. Например, все известные флаво- нон-7-Р-неогесперидозиды — горькие вещества. Самыми горькими веществами являются нарингин и понцирин, они примерно в 5 раз более горькие, чем гидрохлорид хинина, причем их горький вкус обусловлен строением углеводного компонента неогесперидозы (2-0-а-/.-рамнопиранозил-0-глюкопираноза).
Флавоноидные гликозиды обладают оптической активностью. Одна из характерных особенностей флавоноидных гликозидов — способность к кислотному и ферментативному гидролизу. Скорость гидролиза и условия его проведения различны для различных гр/пп флавоноидов. Так, флавонол-3-гликозиды легко гидролизуются при нагревании со слабыми минеральными кислотами (0,1—1 %), а флавон-7-гликозиды гидролизуются лишь при нагревании с 5—10%- ными минеральными кислотами в течение нескольких часов. Флавоноидные С-гликозиды не гидролизуются ферментами и разбавленными кислотами, их гидролиз осуществляют смесью Килиани (смесь концентрированной НС1 и уксусной кислот).
§ 3. Методы выделения и идентификация
Для выделения флавоноидов проводят экстракцию растительного материала, как правило, одним из низших спиртов. Спиртовое извлечение упаривают, к остатку добавляют горячую воду и после охлаждения удаляют^ нёполярные соединения (хлорофилл, жирные масла, эфирные масла и др.) из водной фазы хлороформом или четыреххлористым углеродом. Флавоноиды из водной фазы извлекают последовательно этиловым эфиром (агликоны), этилацетатом (в основном монозиды) и бутанолом (биозиды, триозиды и т. д.).
Для разделения компонентов каждой фракции используют колоночную хроматографию на силикагеле, полиамидном -сорбенте или целлюлозе. Элюирование веществ проводят смесью хлороформа с метиловым спиртом с возрастающей концентрацией метилового спирта, спирто-водными смесями с возрастающей концентрацией спирта, если сорбентом служит полиамид, или 5—30 %-ной уксусной кислотой в случае целлюлозы.
Для выделения отдельных флавоноидов существуют специфические методы. Так, для выделения рутина из бутонов софоры японской экстракцию проводят горячей водой. При охлаждении водных извлечений рутин выпадает в осадок, его отфильтровывают и очищают перекристаллизацией из, спирта.
Для идентификации флавоноидов используют их физико-химические свойства: 1) определение температуры- плавления; 2) определение удельного вращения (ta]D гликозидов); 3)-сравнение УФ, ИК, масс-, ПМР спектров со спектрами известных образцов.
УФ спектр флавоноидов характеризуется наличием, как правило, двух максимумов поглощения. Положение максимумов и их интенсивность характерны для различных групп флавоноидов. Флавоноловые гликозиды производные кверцетина (например, ру
гин) имеют 2 максимума поглощения при 258 и 361 нм и «плечо» 266 нм. Для целей идентификации вещества используются положе- яия максимумов и «плеча», величина £}%. Эта величина для рутина равна 325,5, в случае моногликозида кверцитрина она лежит в пределах 350, в то время как у агликона (кверцетина) составляет 718. УФ спектроскопия успешно используется для установления свободных ОН-групп в молекуле флавоноида путем добавления различных реактивов (ацетата натрия, метилата натрия, борной кислоты : ацетатом натрия, хлористого алюминия и т. д.). При добавлении этих реактивов происходит смещение максимумов поглощения, характерное для гидроксильных групп в различных положениях.
В ИК спектре флавоноидов имеются полосы поглощения, характерные для различных группировок. Так, рутин имеет широкую полосу 3200—3500 см-1, обусловленную фенольными и спиртовыми гидроксильными группами: полоса 1660 см-1 принадлежит карбонильной группе; ароматические С=С-связи дают ряд полос 1610, 1580, 1510, 1460 см-1. Важной для идентификации флавоноидов является так называемая область «отпечатка пальцев» 80Ю— 1200 см"1. Совпадение полос указанных группировок и области «отпечатка пальцев» служит надежным признаком- идентичности веществ.
