
- •Глава 1. Витамины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Качественное определение
- •§ 4. Количественное определение
- •Аскорбиновая 2, 6-дихлорфенолиндофенол кислота
- •§ 1. Классификация
- •Бисаболен
- •-Герма кран
- •§ 2. Физико-химические свойства
- •§ 3. Методы получения
- •§ 4. Анализ растительного сырья
- •Рио. 1. Прибор для определения эфирного масла в растительном сырье по методу 1 гф X:
- •§ 5. Анализ эфирного масла
- •Рив. 5. Хрома- тограмма эфирного масла эвкалипта:
- •Глава 3. Сердечные гликозиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 4. Сапонины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 5. Фенологликозиды и флороглюциды
- •§ 1. Классификация
- •§ 2. Физпко-химнчеекпе свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •§ 6. Классификация
- •§ 8. Методы выделения и идентификация
- •§ 9. Качественное определение
- •Глава 6. Антраценпроизводные и их гликозиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 7. Флавоноиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 8. Кумарины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 9. Дубильные вещества
- •§ 1. Классификация
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 10. Алкалоиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение и идентификация
- •Рио. 28. Уф спектр морфина
- •§ 5. Количественное определение
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 12. Экстрактивные вещества, влага, зола § 1. Определение экстрактивных веществ
- •§ 2. Определение влаги в лекарственном растительном сырье
- •§ 3. Определение золы в лекарственном растительном сырье
- •1 Определение оптической плотности окрашенного раствора можно проводить на фотоколориметре фэк-56м при зеленом светофильтре (длина волны 540 нм).
§ 6. Классификация
Флороглюциды являются соединениями, производными флоро- глюцина или пирона. Они встречаются в виде мономеров или веществ, связанных группой (—СН2) в димеры, тримеры или тетра- меры. Мономерные соединения в свою очередь подразделяются на: а) бутирилфлороглюцин и его производные; б) метилбутирилфло-
н3сч ,сня
J
А 13
,0 16
СН, 69
/\ЛА 92
sAn< ' 139
осн, 144
бутирилфлороглюцин метилбутирилфлоро- филициновая
глюцнн кислота
К димерным веществам относятся: а) производные бутирилфло- роглюцина и метилбутирилфлороглюцина, например флораспидинол; б) производные ацилфилициновых кислот: альбаспидин и его гомологи; в) производные ацилфилициновых кислот, бутирил- флороглюцина, метилбутирилфлороглюцина, флаваспидовая кислота и ее гомологи, и др., например, флаваспидовая кислота; г) производные 2,3-дигидро-2-окси-6-пропил-у-пирона (флораспирон и флоропирон):
СН,
НО-/\-ОСН, н,СО-У\-ОН НА-С i I J—с—с3н7
,1 у \ /У [ о Ан \сн/ Ан о
флораспидинол
НзСч^^СНз Н/^СН,
НО——ОН ОН—ОН Н7С3-С-^Х 1]_С-С3Н7
О А \сн/ i о
альбаспидин
Н3СХ/СН3
НО—/\-0Н НО-/\-ОН н7с3-с-^х А/-С-С3Н7
А \сн/ Тн А
флаваспидовая кислота
HA-/°Vo H£Q-/VOH
9 1 V )-С-С3Н7
\сн/ Ан 6
флораспирон
роглюцин
и его "метоксилированные производные;
в) филициновая кислота и ее производные:
СН,
К тетрамерным соединениям относят два известных в настоящее время природных вещества, одно из них метилен-бмс-норфлаваспи- довая кислота.
филиксовая
кислота:
НА-'
—С—QH7
Н-Г
гн. СОС3Н7
н г
гц
Н< Н
Флороглюциды обладают кислотным характером, обусловленным гидроксильными группами, связанными с ароматическим кольцом. Бензольное кольцо, вступая в реакцию с целым рядом реагентов, дает соединения с характерной окраской, что используется для обнаружения флороглюцидов в растениях. Флороглюцино- вые производные при отсутствии в их структуре пространственных затруднений способны к образованию межмолекулярных и внутримолекулярных связей. Они имеют характерную область поглощения в УФ спектрах (215—240 и 240—380 нм); кристаллизуются в виде веществ желтого, реже белого цвета; нерастворимы в воде, растворимы в органических растворителях (избирательно), хорошо — в щелочах и жирных маслах.
§ 8. Методы выделения и идентификация
Выделение производных флороглюцина из растительного сырья проводят экстракцией различными органическими растворителями: этиловым эфиром, хлороформом, ацетоном, этиловым и метиловым
%%
ЯП
Рис.
9. И К спектр аспидинола
спиртами. Получаемый после отгонки растворителя густой экстракт обрабатывают водным раствором гидроксида бария, оксида магния и т. д., в результате чего флороглюциды переходят в феноляты.
Водные растворы затем подкисляют концентрированными соляной, серной или уксусной кислотами, при этом в осадок выпадает сумма флороглюцидов, называемая сырым филицином.
Хроматографический метод считается наиболее подходящим для разделения производных флороглюцина и чаще всего используется
при изучении этих веществ. Для этих целей применяют бумажную хроматографию, хроматографию в тонком слое сорбента и хроматографический метод разделения на колонках. Адсорбентом служат си- ликагель, диоксид кремния, полиамид, оксид алюминия. В качестве подвижной фазы используются смеси: петролейный эфир — хлороформ (1 : 1); бензол — хлороформ (1 : 1); циклогексан — хло- . роформ (1 : 1); гексан — петролей-
'2W 260 Ш зЬ—AjiM ный ЭФИР (1 ! 1) с 5 % этилового
спирта и др. На хроматограмме для Рио. 10. УФ спектр аспидинола обнаружения производных флороглюцина используют их свойства флуоресцировать в УФ свете, а также давать окрашенные соединения с диазореактивами.
Строение веществ устанавливается на основании элементного анализа, температуры плавления, получения производных, в результате щелочного гидролиза (у ди- и полимеров), УФ, ИК, ПМР и масс-спектроскопии. На рис. 9 и 10 приведены данные спектра УФ и ИК для мономера аспидинола, выделенного из корневищ мужского папоротника.