
- •Глава 1. Витамины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Качественное определение
- •§ 4. Количественное определение
- •Аскорбиновая 2, 6-дихлорфенолиндофенол кислота
- •§ 1. Классификация
- •Бисаболен
- •-Герма кран
- •§ 2. Физико-химические свойства
- •§ 3. Методы получения
- •§ 4. Анализ растительного сырья
- •Рио. 1. Прибор для определения эфирного масла в растительном сырье по методу 1 гф X:
- •§ 5. Анализ эфирного масла
- •Рив. 5. Хрома- тограмма эфирного масла эвкалипта:
- •Глава 3. Сердечные гликозиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 4. Сапонины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 5. Фенологликозиды и флороглюциды
- •§ 1. Классификация
- •§ 2. Физпко-химнчеекпе свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •§ 6. Классификация
- •§ 8. Методы выделения и идентификация
- •§ 9. Качественное определение
- •Глава 6. Антраценпроизводные и их гликозиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 7. Флавоноиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 8. Кумарины
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 9. Дубильные вещества
- •§ 1. Классификация
- •§ 3. Методы выделения и идентификация
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 10. Алкалоиды
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение и идентификация
- •Рио. 28. Уф спектр морфина
- •§ 5. Количественное определение
- •§ 1. Классификация
- •§ 2. Физико-химические свойства
- •§ 3. Методы выделения
- •§ 4. Качественное определение
- •§ 5. Количественное определение
- •Глава 12. Экстрактивные вещества, влага, зола § 1. Определение экстрактивных веществ
- •§ 2. Определение влаги в лекарственном растительном сырье
- •§ 3. Определение золы в лекарственном растительном сырье
- •1 Определение оптической плотности окрашенного раствора можно проводить на фотоколориметре фэк-56м при зеленом светофильтре (длина волны 540 нм).
Глава 5. Фенологликозиды и флороглюциды
ФЕНОЛОГЛИКОЗИДЫ (ГЛИКОЗИДЫ ПРОСТЫХ ФЕНОЛОВ)
В группу гликозидов простых фенолов относят такие гликозиды, которые при гидролизе расщепляются на агликоны, содержащие одну или несколько гидроксильных фенольных групп при одном бензольном кольце. Кроме фенольных гидроксилов в качестве заместителей в агликонах могут быть оксиметильная, оксиэтильная или карбоксильная группы.
Фенольные гликозиды достаточно широко представлены в растениях различных семейств, например ивовых, камнеломковых, тол- стянковых, брусничных и др
Фенольные гликозиды, например арбутин, обладают антимикробной и диуретической активностью. Гликозид салидрозид, впервые изолированный из коры ивы и позднее обнаруженный в корневищах и корнях родиолы розовой, обладает стимулирующим и адап- тогенным действием.
§ 1. Классификация
В зависимости от характера заместителей в бензольном кольце фенологликозиды можно разделить на 3 группы.
К первой группе относится арбутин, содержащийся в листьях толокнянки, брусники и бадана. Наряду с арбутином в этих растениях присутствует метиларбутин. Агликонами этих гликозидов являются соответственно гидрохинон и метилгидрохинон:
арбутин метиларбутин
Вторая группа фенольных гликозидов представлена, например, салидрозидом и салицином. Агликоны этих гликозидов 4-оксифе- нилэтанол и 2-оксифенилметанол (салициловый спирт). Наряду с фенольными гидроксилами эти агликоны имеют спиртовые гидрок- сильные группы, и гликозидирование их может быть по фенольным и спиртовым группам:
салицин салидроэид
Представителем третьей группы является гликозид салициловой кислоты, агликон которого содержит карбоксильную группу:
соон
§ 2. Физпко-химнчеекпе свойства
Фенольные гликозиды в индивидуальном состоянии представляют собой белые кристаллические вещества, растворимые в воде, этиловом спирте, ацетоне, нерастворимые в этиловом эфире и хлороформе. Все фенольные гликозиды оптически активны в связи с при-
дствием в их молекуле углеводного компонента (как правило,
ИОКОЗЫ).
Фенольные гликозиды, как и все О-гликозиды, характеризуются юсобностью к гидролизу при нагревании с минеральными кисло- 1ми или при термостатировании с ферментами.
При гидролизе расщепление происходит до углеводного компо- :нта и соответствующего агликона. Подобный гидролиз происхо- IT и в живом организме под действием ферментов; при этом пер- шными продуктами метаболизма фенольных гликозидов являются ликон и сахар.
§ 3. Методы выделения и идентификация
Фенольные гликозиды извлекают из растительного материала иловым и метиловым спиртами (96, 70 и 40°). В дальнейшем истку спиртовых извлечений ведут общепринятым для гликози- в методом.
Выделение индивидуальных соединений проводят, как правило, годом адсорбционной хроматографии на полиамиде, силикагеле, члюлозе. В качестве элюирующих смесей используются вода юдный спирт, если адсорбентом служит полиамид или целлюлоза, 5о различные смеси органических растворителей для всех переменных адсорбентов.
Фенольные гликозиды в лекарственном растительном сырье -ут быть идентифицированы хроматографией в тонком слое )бента или на бумаге.
Для хроматографирования в тонком слое сорбента используют темы растворителей: 1) н-бутанол — уксусная кислота — вода 1 1 5); 2) н-бутанол — уксусная кислота — вода — ксилол 2:3:4); 3) хлороформ — метиловый спирт (8 : 2). При хроматографировании на бумаге используют 5, 10, 15%-ную усную кислоту.
Для индивидуальных веществ определяют температуру плавле- , удельное вращение, снимают УФ и ИК спектры. Рассмотрим и ИК спектры на примере арбутина. В связи с наличием в моле- е фенольных гликозидов ароматических С—С-связей фенольные козиды имеют максимум поглощения в УФ спектре при 2*70— нм. Максимум поглощения арбутина находится при 287 нм ожет быть использован как для качественной характеристики, и количественного определения арбутина в растительном мате- ле.
3 ИК спектре арбутина имеются характерные полосы при )—3400 см"1, обусловленные наличием спиртовых и фенольных юксильных групп; полоса 1515, 1460, 1440 см"1 типична для этических С=С-связей. Имеется ряд полос в области 800— 1 см"1 (область «отпечатка пальцев»). Совпадение спектров иссле- юго гликозида со спектром достоверного образца указывает дентичность соединений. Для идентификации фенольных гли-
козидов широко используются химические превращения (гидролиз, ацетилирование, метилирование и т. д.) и сравнение констант продуктов превращения с литературными данными для предполагаемого гликозида.