Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ксе ответы.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.05 Mб
Скачать

Свойства генетического кода

  1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

  2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

  3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов. (Не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

  4. Однозначность — определённый кодон соответствует только одной аминокислоте. (Свойство не является универсальным. Кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)

  5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

  6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии) (Из этого свойства также есть ряд исключений, см. таблицу в разделе "Вариации стандартного генетического кода" в данной статье).

21. КЛОНИРОВАНИЕ, воспроизведение генетически однородных организмов (клеток) путём бесполого (вегетативного) размножения. При клонировании исходный организм (или клетка) служит родоначальником клона – ряда организмов (клеток), повторяющих из поколения в поколение и генотип, и все признаки родоначальника. Таким образом, сущность клонирования заключается в повторении одной и той же генетической информации. В основе точного копирования генетического материала (и организма в целом) у эукариотических клеток лежит митоз (у бактерий – простое деление). В многоклеточном организме, зародившемся в результате полового процесса, все клетки, несмотря на их различия и специализацию, представляют собой клон, развившийся из оплодотворённой яйцеклетки. Однако такой организм-клон и генетически, и своими признаками будет отличаться от родительских организмов.  Благодаря бесполому (вегетативному) размножению многоклеточный организм может развиться из одной соматической (неполовой) клетки, из группы таких клеток или из части родительского организма. В природе такое размножение, или клонирование, широко распространено у грибов, водорослей, простейших, а также у многих высших растений. У многоклеточных животных клонирование возможно либо в форме почкования, либо как деление тела животного на части и восстановление каждой части до целого организма. Так могут размножаться кишечнополостные, губки, многие черви, мшанки, а из хордовых – оболочники. Классический, издавна известный пример животного, которое, будучи разделено на десятки и даже сотни частей, способно к воссозданию (регенерации) из каждой части целого организма – гидра. Естественное клонирование позвоночных животных встречается редко и возможно, по-видимому, только на ранних стадиях зародышевого развития. Так, однояйцевые близнецы у животных и человека происходят от одной оплодотворённой яйцеклетки в результате её митотиче-ского разделения, т. е. клонирования. Подобное клонирование характерно для броненосцев, у которых обычны однояйцевые двойники.  Искусственное, т. е. осуществляемое человеком, клонирование широко применяется как в научных, так и в практических целях. Наряду с различными способами вегетативного размножения, известными с древности, в растениеводстве всё шире входит в практику т. н. микрораз-множение – выращивание посадочного материала из одиночных клеток с применением методов культуры клеток и тканей. Клонирование бактерий и соматических клеток растений и животных используется в микробиологии, в генетике, в практических направлениях биотехнологии и клеточной инженерии, во всех тех теоретических и практических работах, когда необходимо иметь генетически однородный материал.  Особый интерес вызывают эксперименты, связанные с клонированием позвоночных животных и человека. Исследования в этом направлении ведутся давно. В 1987 г. отечественные учёные в Пущинском научном центре осуществили первое клонирование млекопитающего – мыши. Для этого из яйцеклетки мыши удаляли ядро, а затем вводили в яйцеклетку ядро из эмбриональной мышиной клетки. Т. е. был использован генетический материал соматической, но недифференцированной (неспециализированной) эмбриональной клетки. В 1997 г. шотланд-ским учёным удалось клонировать овцу, используя в качестве донора генетического материала эпителиальные клетки молочной железы. Зародыш вводили (имплантировали) в организм приёмной матери, которая и вынашивала ягнёнка. В этом случае, что представляет принципиальный интерес, использовалась в качестве донора специализированная соматическая клетка. Таким образом, эти эксперименты доказали, что можно получать генетически идентичные копии (клоны) млекопитающих, используя их соматические клетки.  Предполагается, что клонирование найдёт широкое применение в животноводстве. В принципе не представляется невероятным выращивание из хорошо сохранившихся в вечной мерзлоте соматических клеток вымерших животных (напр., мамонта) полноценного организма. Эксперименты по клонированию человека осуждаются международными организациями и запрещены в ряде стран как неприемлемые в нравственном отношении. Тем не менее в кон. 2002 г. в мире появились неподтвержденные сообщения о рождении детей, клонированных из соматических клеток.  В генной инженери и клонирование – получение копий определённых участков ДНК (генов).

клонирование людей, которое рано или поздно произойдет, не должно являться трагедией со стороны этического воспитания и культурных традиций. Клон никогда не будет являться полной копией человека как личности, а будет скорее определенным “каркасом”, который может вырасти совершенно другим с отличными от настоящего человека вкусам и взглядами.  Более того, сегодня ученые на основе научных разработок доказывают, что клонирование человека даже на физическом уровне не дает 100%-ю уверенность в том, что такой клон будет генетически развиваться в соответствии со своим прототипом. Даже если их поместить в совершенно одинаковые условия существования, клон может иметь существенные отличия в весе, росте, полноте и даже в своей комплекции. Это дает ученым приводить веские доказательства того, что в клонировании ничего плохого нет, и что как сын может быть похожим на своего отца, так и клон может иметь лишь относительную схожесть со своим генетическим началом. Таким образом, можно сказать, что, несмотря на некоторые спорные моменты, которые выдвигают священники, культурологи и психологи, в целом,  клонирование людей не может принести особого вреда человечеству, поскольку это будут такие же люди, ничем не отличающиеся от обычных. Что же касается дальнейшего сосуществования таких видов, то здесь только будущее сможет показать правильность или ошибочность многих утверждений сегодняшних ученых.- Читайте подробнее на

24 Корпускуля́рно-волново́й дуали́зм (или Ква́нтово-волново́й дуали́зм) — принцип, согласно которому любой физический объект может быть описан как с использованием математического аппарата, основанного на волновых уравнениях, так и с помощью формализма, основанного на представлении об объекте как частице или системе частиц. В частности, волновое уравнение Шрёдингера не накладывает ограничений на массу описываемых им частиц, и следовательно, любой частице, как микро-, так и макро-, может быть поставлена в соответствие волна де Бройля. В этом смысле любой объект может проявлять как волновые, так икорпускулярные (квантовые) свойства[1].

Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В соответствии с теоремой Эренфеста квантовые аналоги системы канонических уравнений Гамильтона для макрочастиц приводят к обычным уравнениям классической механики. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля.

Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла[2]. Характер решаемой задачи диктует выбор используемого подхода: корпускулярного (фотоэффект, эффект Комптона), волнового или термодинамического[3].

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году[4]. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например,атомными ядрами), или вообще могут считаться точечными (например, электрон).

Сейчас концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как, во-первых, некорректно сравнивать и/или противопоставлять материальный объект (электромагнитное излучение, например) и способ его описания (корпускулярный или волновой); и, во-вторых, число способов описания материального объекта может быть больше двух (корпускулярный, волновой, термодинамический, …), так что сам термин «дуализм» становится неверным. На момент своего возникновения концепция корпускулярно-волнового дуализма служила способом интерпретировать поведение квантовых объектов, подбирая аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям(пропагаторная), свободная от использования классических понятий.