- •Учебный материал
- •1.2Классификация информационных технологий
- •1.3Объектно-ориентированная информационная технология
- •1.4Классификация информационных систем
- •1.4.1Классификация ис по назначению
- •1.4.2Классификация ис по структуре аппаратных средств
- •1.4.3Классификация ис по режиму работы
- •1.4.4Классификация ис по характеру взаимодействия с пользователями
- •1.4.5Состав и характеристика качества ис
- •2 Классификация информационно-коммуникационных систем
- •2.1Типы телекоммуникационных систем
- •2.2Мультисервисные сети
- •2.3Системы телевещания
- •2.4Системы подвижной связи
- •2.4.1Сети сотовой связи
- •2.4.2Сети персональной спутниковой связи
- •2.5Сети абонентского доступа
- •2.5.1Сети на базе технологии gepon
- •2.5.2Цифровые абонентские линии xDsl
- •2.5.3Оптические сети на базе технологий ftTx
- •3Каналы информационно-коммуникационных систем
- •3.1Общая классификация каналов связи
- •3.2Физические каналы связи
- •3.2.1Коаксиальный кабель
- •3.2.2Витая пара
- •3.2.3Приземные радиоволны
- •3.2.4Спутниковые радиоволны
- •3.2.5Радио-релейные линии
- •3.3Волоконно-оптические линии связи
- •4Коммутация, методы коммутации
- •4.1Общие понятия коммутации
- •Коммутация каналов,
- •Коммутация пакетов.
- •4.2Коммутация каналов
- •4.2.1Коммутация каналов на основе частотного мультиплексирования
- •4.2.2Коммутация каналов на основе разделения времени
- •4.2.3Оптическое (волновое) мультиплексирование
- •4.2.4Дуплексный режим работы на основе технологий fdm, tdm и wdm
- •4.3Коммутация пакетов
- •4.4Коммутация ячеек
- •5Телевещание
- •5.1Конфигурация сетей телевещания
- •5.2Методы доставки телевизионного контента
- •5.2.1Телевидение коллективного пользования (эфирное)
- •5.2.2Кабельное телевидение
- •5.2.3Технологии беспроводного распределения информации mmds
- •6Спутниковые системы связи
- •6.1Классификация систем спутниковой связи
- •6.2Принципы построения спутниковых систем связи
- •7Технологии кабельного абонентского доступа
- •7.1Общая характеристика
- •7.2Технологии семейства xDsl
- •7.3Технология gepon
- •7.4Технологии семейства ftTx
- •8Технологии беспроводного абонентского доступа
- •8.1Стандарт ieee 802.15 (Bluetooth)
- •8.2Стандарт ieee802.11 Wi-Fi
- •8.3Технологии стандарта ieee 802.11
- •8.3.1Стандарт ieee 802.11 и его расширение 802.11a/b/g
- •8.3.2Физический уровень 802.11
- •8.3.3Канальный уровень 802.11
- •8.3.4Безопасность
- •8.4Стандарт ieee 802.11b
- •8.4.1Физический уровень
- •8.5Стандарт ieee 802.11g
- •8.7Стандарт 802.16 wimax
- •8.8Подуровень конвергенции (Convergence Sublayer - cs)
- •8.9Доступ к радиотракту
- •8.10Оборудование
- •8.11Сопоставление WiMax и Wi-Fi
- •9Технологии городских телекоммуникационных сетей
- •9.1Плезиосинхронная цифровая иерархия pdh
- •9.2Синхронная цифровая иерархия sdh
- •9.2.1Иерархия скоростей сети sdh
- •9.2.2Уровни sonet и эталонная модель osi
- •9.3Топология сети sdh
- •9.4Процедуры мультиплексирования внутри иерархии sdh.
- •9.5Оборудование сети sdh
9.4Процедуры мультиплексирования внутри иерархии sdh.
Наиболее важными потоками иерархии SDH являются потоки STM-1, STM-4 и STM-16. Самый низки уровень сигнала назван «Синхронный Транспортный Модуль» первого уровня или STM-1, имеющий скорость 155 Мб/с. Сигналы более высокого уровня получаются мультиплексированием с «чередованием байтов» сигналов низшего уровня. Линейная скорость более высокого уровня STM-N сигнала равна произведению N на 155.52 Мбит/с, т.е. линейную скорость сигнала самого низкого уровня.
Внутри иерархии SDH мультиплексирование выполняется синхронно, без процедуры выравнивания скоростей. В результате обеспечивается основное преимущество концепции SDH как технологии построения цифровой первичной сети - возможность загрузки и выгрузки потоков любого уровня иерархии PDH из любого потока иерархии SDH вне зависимости от скорости передачи.
Для удобства реализации синхронного мультиплексирования с использованием современных логических устройств, мультиплексирование выполняется байт-синхронно в отличие от бит-ориентированных процедур, используемых в иерархии PDH. В результате использования байт-ориентированных процедур мультиплексирования значительно повышается производительность процессоров, в результате достигается высокая скорость передачи в первичной сети.
Использование в концепции SDH байт-синхронного мультиплексирования позволило также увязать динамику развития пропускной способности в цифровых системах передачи с динамикой развития производительности современных процессоров, что было важно, поскольку на этапе технологии PDH наметилось некоторое отставание.
9.5Оборудование сети sdh
Типичная система SDH представлена в виде совокупности транспортных секций: мультиплексорных секций и регенераторных секций (рис. 9.9). Система передачи от мультиплексора сборки виртуальных контейнеров (VC) до мультиплексора разборки VC и вывода нагрузки рассматривается обычно как маршрут.
Рисунок 9.9 – Модель транспортной сети SDH
В состав маршрута входят мультиплексоры ввода-вывода, составляющие мультиплексорные секции, регенераторы и коммутаторы, составляющие регенераторные секции.
Коммутаторы SDXC обеспечивают переключения на уровне потоков иерархий PDH и SDH. Обычно коммутаторы используются для оперативной реконфигурации сети, что повышает ее надежность и живучесть, а также позволяет оперативно управлять ресурсами.
Мультиплексоры ввода/вывода (МВВ - ADM) являются ключевыми элементами сети SDH, поскольку обеспечивают загрузку и выгрузку потоков PDH в сеть SDH, формирование синхронных транспортных модулей STM-n и управление процедурами мультиплексирования/демультиплексирования.
Синхронные мультиплексоры MUX обеспечивают мультиплексирование нескольких потоков PDH или STM низкого уровня иерархии в потоки STM-n. Обычно MUX является составной частью ADM или SDXC.
Регенераторы REG выполняют функции восстановления и усиления линейного сигнала STM-n при его передаче по сети SDH.
