- •Минобрнауки россии
- •Эксплуатация и ремонт систем электроснабжения промышленных предприятий
- •Введение
- •1. Организация электромонтажных работ электрооборудования
- •1.1 Организация, планирование проведения электромонтажных работ
- •1.1.1. Пусконаладочные работы и сдача объекта в эксплуатацию
- •1.2. Монтаж воздушных линий электропередачи и заземляющие устройства
- •1.3 Монтаж кабельных линий, муфт напряжением до 35 кВ
- •1.3.1 Приемка кабельной линии в эксплуатацию
- •1.4. Монтаж электрооборудования силового трансформатора
- •1.4.1. Включение трансформатора
- •1.5. Монтаж электрооборудования ру и заземляющих устройств.
- •1.5.1. Монтаж и техническое обслуживание распределительных устройств
- •1.5.2 Техническое обслуживание ру напряжения до 1000 в
- •2. Организация эксплуатации элетрооборудования
- •2.1. Связь эксплуатации и надежности оборудования
- •2.1.1. Контроль работоспособности и обслуживание оборудования
- •2.2.Эксплуатация воздушных линий электропередачи
- •2.2.2. Определение места повреждения
- •2.2.3. Борьба с гололедом
- •2.3. Эксплуатация кабельных линий электропередачи
- •2.3.1. Допустимые нагрузки при эксплуатации
- •2.3.2. Профилактические испытания и определение мест повреждения
- •2.4. Эксплуатация силовых трансформаторов
- •2.4.1. Режимы работы трансформаторов, перегрузки
- •2.4.2. Расчет теплового режима трансформатора и термического износа изоляции
- •Ремонт электрооборудования
- •3.1 Организация ремонта электрооборудования. Структура электроремонтной мастерской
- •3.1.1. Классификация, виды и переодичность ремонтов трансформаторов
- •3.1.2. Ремонт трансформаторов
- •3.1.3. Объем работ, выполняемых при капитальном ремонте трансформаторов
- •3.1.4. Контрольная подсушка и сушка трансформаторов
- •3.1.5. Нормы испытаний трансформаторов после капитального ремонта
- •3.1.6. Характеристики и испытания изоляции обмоток трансформаторов
- •3.1.7. Текущий ремонт и расчет трансформаторов при ремонте
- •3.2.1. Объем расчета при капитальном ремонте и в восстановительный период трансформатора
- •3.2.2.Модернизация трансформаторов
- •Контрольные вопросы
- •3.2.3. Капитальный ремонт трансформатора без разборки активной части
- •3.2.4. Ремонт активной части трансформатора
- •3.2.5. Капитальный ремонт трансформатора с разборкой активной части. Дефектировка трансформатора.
- •3.2.6. Ремонт обмоток и магнитной системы трансформатора
- •3.2.7. Испытания трансформатора после капитального ремонта
- •3.3. Ремонт электрических машин
- •3.3.1 Ремонт обмоток ротора, коллектора и контактных колец эм.
- •3.3.2. Изготовление и укладка обмоток из различных.
- •3.3.3. Порядок поверочного расчета и расчет основных параметров. Электромагнитный расчет.
- •3.3.4. Ремонт обмотки возбуждения и якоря
- •3.3.6. Испытание электрических машин после ремонта.
- •3.4.Ремонт асинхронных электродвигателей.
- •3.4.1.Методика поверочных расчетов асинхронных двигателей.
- •3.4.2. Пересчет асинхронных двигателей на другое напряжение, частоту вращения и частоту питания.
- •3.4.3.Электробезопасность
- •3.4.5. Разборка и сборка электродвигателей.
- •3.4.6. Ремонт статора и ротора, контактных колец и щеточного аппарата
- •3.4.7. Неисправности обмоток эм и их восстановления.
- •3.4.8. Изготовление полюсных катушек
- •3.4.9. Ремонт обмоток якорей из прямоугольного провода.
- •3.5. Ремонт пускорегулирующей аппаратуры,его виды и причины повреждений.
- •3.5.1. Ремонт выключателей, предохранителей и магнитопроводов
- •3.5.2. Ремонт изоляционных частей, дугогасительных камер, катушек контакторов и магнитных пускателей
- •3.5.3. Ремонт рубильников, резисторов и реостатов.
- •3.5.4. Проверка и испытание отремонтированных аппаратов
- •3.5.5. Ремонт предохранителей и пусковой аппаратуры
- •3.6. Ремонт воздушных линий
- •3.6.1.Ремонт воздушных линий электропередач.
- •3.7. Ремонт кабельных линий
- •3.7.1. Технология монтажа и ремонта соединительных муфт на кабелях напряжением до 10 кВ
- •3.8. Ремонт электрической аппаратуры ру и установок
- •4.Тепловизионный контроль оборудованиия. Характерные теплограммы
- •3.3.1.Технология монтажа и ремонта светильников общего рименени.
- •3.3.2.Технология монтажа и ремонта взрывозащищенных светильников
- •3.3.3. Технология монтажа и ремонта электроустановочных устройств
- •Заключение
- •Библиографический список
- •Эксплуатация и ремонт систем электроснабжения промышленных предприятий
3.1.6. Характеристики и испытания изоляции обмоток трансформаторов
При приложении к изоляции напряжения в ней происходят процессы поляризации и проводимости, имеют место диэлектрические потери. Эти процессы определяют характеристики изоляции, ее состояние. Для достоверной оценки состояния изоляции (увлажнения, загрязнения, старения) измеряется совокупность ее характеристик, поскольку недостатки одних измерений компенсируются преимуществами других.
Поляризация - это ограниченное смещение находящихся в изоляции связанных противоположных зарядов, происходящее под действием электрического поля. Реальные изоляционные материалы обладают несколькими видами поляризации, но преобладающим яляется какой-то один ее вид. У полярных диэлектриков, к которым относится изоляция обмоток трансформаторов, преобладает дипольно-релаксационный вид поляризации. Этот замедленный (инерционный) вид поляризации, продолжающийся десятки секунд, называется абсорбцией, а сопровождающий это явление ток - током абсорбции.
Изменение тока абсорбции во времени при приложении к изоляции постоянного напряжения показано на рис.3.10, а кривой 1. По мере завершения смещения связанных противоположных зарядов происходит спад этого тока. Установившееся значение тока утечки iут через изоляцию определяется ее объемной и поверхностной проводимостью (сопротивлением).
а) б)
Рис. 3.10. Изменение тока абсорбции (а) и сопротивления изоляции (б) при приложении к ней постоянного напряжения
Переходный процесс спада тока абсорбции можно представить увеличением сопротивления изоляции R во времени (кривая 1 рис. 3.10,б). Сопротивление изоляции измеряется мегаомметром, отсчет сопротивления производится приблизительно через 60 секунд. Этого времени, как правило, достаточно для завершения процесса абсорбции. Итак, одной из характеристик изоляции является установившееся значение ее сопротивления, обозначаемое R60. Очевидно, чем больше сопротивление R60, тем выше качество изоляции.
Наименьшие допустимые сопротивления изоляции обмоток масляных трансформаторов при температуре 10…30оС составляют:
R60=300 МОм - для трансформаторов напряжением до 35 кВ ;
R60=600 МОм - для трансформаторов напряжением 110 кВ;
R60 - не нормируется для трансформаторов напряжением 220 кВ.
Допустим, что кривые 1 рис. 3.10, а и б соответствуют нормальной
сухой изоляции. При увлажнении (загрязнении, старении) изоляции ее характеристики ухудшаются: ток утечки возрастает, сопротивление изоляции R60 уменьшается (кривые 2 рис.3.10, а и б).
Выполняя отсчет сопротивления изоляции по мегаомметру для двух
моментов времени t1 и t2 и сопоставляя между собой сопротивления Rt1 и Rt2, можно судить, в частности, об увлажнении изоляции. Обычно принимается t1=15 с, а t2=60 с, а отношение R60/R15 называется коэффициентом абсорбции. Из кривых 1 и 2 рис.3.10, б видно, что для влажной изоляции коэффициент абсорбции будет меньше, чем для сухой.
Для нормальной изоляции коэффициент абсорбции, измеренный при температуре 10…30оС, должен быть не менее 1,3 [1].
В соответствии с характером зависимостей, приведенных на рис.
3.10, б, реальную изоляцию можно представить схемой замещения,
показанной на рис. 9.8,а.
а) б)
Рис. 3.11. Схема замещения изоляции (а) и векторная диаграмма напряжения и токов (б)
Ветвь RaCa характеризует инерционность явления абсорбции, ветвь R60–сопротивление изоляции после завершения смещения всех связанных противоположных зарядов.
При приложении к изоляции переменного напряжения U по ней протекает полный ток I, состоящий из тока абсорбции Ia и тока утечки Iут. Этот полный ток в соответствии с векторной диаграммой рис. 3.11, б можно разложить на активную IR и емкостную IC составляющие. Произведение UIR определяет потери активной мощности в изоляции. Эти потери, идущие на нагревание изоляции, называются диэлектрическими потерями.
Отношение IR / IC = tgδ называется тангенсом угла диэлектрических потерь и характеризует стойкость изоляции по отношению к тепловому пробою, а также увлажнение изоляции и общее ее старение. Чем меньше tgδ, тем выше качество изоляции.
Наибольшие допустимые значения tgδ, %, при температуре обмоток 10…30оС для масляных трансформаторов составляют:
tgδ =2,5% - для трансформаторов напряжением 35 кВ, мощностью более 10000 кВ.А;
tgδ =2,5% - для трансформаторов напряжением 110 кВ;
tgδ =1,3% - для трансформаторов напряжением 220 кВ.
Потери активной мощности в изоляции в соответствии собозначениями векторной диаграммы (рис.3.11, б) определяются как
.
(3.30)
Поскольку реальные значения tgδ относительно малы, можно полагать, что IC I. Тогда выражение (3.30) можно записать в виде
(3.31)
Из последнего выражения следует, что
(3.32)
Таким образом, tgδ можно измерить по схеме с тремя измерительными приборами: ваттметром для измерения потерь активной мощности ∆Р, вольтметром для измерения приложенного к изоляции напряжения U и амперметром для измерения протекающего через изоляцию тока I. Этот метод измерения достаточно прост, но точность измерений невелика. Более точное измерение tgδ выполняют с помощью специальных высоковольтных мостов.
Измерение характеристик изоляции (R60, R60/R15, tgδ) проводят для всех обмоток трансформатора. В частности, для двухобмоточного трансформатора измерения характеристик изоляции проводят по схеме:измерения на обмотке НН - заземлены обмотка ВН и бак; измерения на обмотке ВН - заземлены обмотка НН и бак; измерения на обмотках НН+ВН - заземлен бак.
Испытания изоляции повышенным напряжением. При эксплуатации испытания повышенным напряжением промышленной частоты проводят для проверки электрической прочности изоляции трансформаторных обмоток напряжением до 35 кВ. Испытанию повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами.
Испытательное напряжение прикладывают к изоляции в течение времени, достаточного, чтобы в месте дефекта изоляции произошел пробой, и недостаточного для пробоя нормальной изоляции. Длительность испытания составляет, как правило, 1 мин. При большем времени может иметь место повреждение изоляции при отсутствии в ней дефектов.
Трансформаторы, предназначенные для эксплуатации в электроустановках, подверженных воздействию атмосферных перенапряжений, испытываются по нормам для нормальной изоляции; трансформаторы, предназначенные для эксплуатации в электроустановках, не подверженных воздействию атмосферных перенапряжений, испытываются по нормам для облегченной изоляции (табл.3.12).
Испытаниям подвергается каждая обмотка трансформатора. Напряжение прикладывается к испытуемой обмотке, выводы которой замкнуты накоротко; остальные обмотки трансформатора также замыкаются накоротко и заземляются вместе с баком трансформатора. Принципиальная схема испытаний приведена на рис.3.12.
Нормы для облегченной изоляции. Таблица 3.12
Uном обмотки, кВ |
до 1 |
3 |
6 |
10 |
20 |
35 |
Uисп для нормальной изоляции, кВ |
4,3 |
15,3 |
21,3 |
29,8 |
46,8 |
72,3 |
Uисп для облегченной изоляции, кВ |
2,6 |
8,5 |
13,6 |
10,4 |
42,5 |
- |
Автоматический выключатель QF предназначен для быстрого отключения установки при пробое или перекрытии изоляции объекта Т. Автотрансформатор АТ предназначен для плавного подъема напряжения. Контроль режима установки осуществляется амперметром
А и вольтметром V. Видимый разрыв при обслуживании установки создается рубильником QS.
Рис. 3.12. Принципиальная схема испытания изоляции повышенным напряжением
Испытательный трансформатор TV повышает напряжение до требуемого уровня. Контроль испытательного напряжения осуществляется киловольтметром kV. Разрядник FV (как правило, шаровый) защищает объект от случайного недопустимого повышения испытательного напряжения. Резистор R ограничивает ток при пробое или перекрытии изоляции объекта.
Испытательное напряжение должно подниматься плавно со скоростью, допускающей визуальный контроль по измерительным приборам, и по достижении установленного значения поддерживаться неизменным в течение времени испытания. После этого напряжение плавно снижается до значения не более одной трети испытательного и отключается.
Под временем испытания подразумевается время приложения полного испытательного напряжения.
Изоляцию считают выдержавшей испытания, если не произошло ее пробоя, не наблюдалось ощутимых на слух потрескиваний и разрядов, выделения газа и дыма, резких изменений показаний измерительных приборов.
Продольная изоляция обмоток (изоляция между витками, катушками, слоями обмоток) испытывается повышенным напряжением, индуктированным в самом трансформаторе. При этих испытаниях к одной из обмоток трансформатора прикладывается двойное номинальное напряжение повышенной частоты 100…400 Гц. Остальные обмотки трансформатора разомкнуты. Длительность испытания 1 мин. Повышение частоты необходимо для избежания чрезмерного увеличения намагничивающего тока и индукции в трансформаторе при приложении к его обмотке двойного напряжения.
Технология испытаний трансформатора после ремонта
В объем контрольных испытаний входят: измерение сопротивления
изоляции обмоток, измерение сопротивления обмоток постоянному току, испытание электрической прочности трансформаторного масла, измерение тока и потерь холостого хода, проверка коэффициента трансформации на всех ответвлениях фаз, проверка группы соединения обмоток, измерение напряжения и потерь короткого замыкания, испытание электрической прочности изоляции, испытание бака трансформатора [3, 28, 36].
Измерение сопротивление изоляции обмоток производится между каждой обмоткой и корпусом (баком, магнитопроводом), а также между обмотками различного уровня напряжения. При этом обмотка, не участвующая в измерении, соединяется с баком и заземляется. Со- противление изоляции трансформаторов измеряют мегомметром на 2,5 кВ. По ГОСТ 3484—88 сопротивление изоляции трансформаторов
мощностью менее 16000 кВ А и напряжением до 35 кВ включительно можно измерять мегомметром на 1 кВ.
При измерении сопротивления изоляции определяют коэффициент абсорбции, который при неувлажненной изоляции должен быть не ниже 1,3. В настоящее время выпускают мегомметры Ф-4100 специально для измерения сопротивления через 60 и 15 с. При оценке результатов измерения учитывают значения сопротивления, ранее измеренные на однотипных трансформаторах.
Измерение сопротивления обмоток постоянному току осуще- ствляется методом амперметра—вольтметра для всех доступных от- ветвлений обмоток всех фаз. Ток при измерении не должен превышать
20% номинального тока обмотки.
Сопротивление фазы: при соединении «звезда» rф = rср /2; при
соединении «треугольник» rф = 3rср/2, где rср — среднее измеренное сопротивление между динейными выводами, Ом.
Сопротивления фаз одной и той же обмотки не должны отличаться друг от друга более чем на ±5% или не более чем на ±2% от расчетных.
Характерные дефекты, которые обнаруживают при измерениях:
некачественные пайки и контакты в обмотках; неправильное сочетание обмоточного провода; обрыв параллельных проводов в обмотках.
При необходимости высокой точности измерений пользуются мос-
том постоянного тока, например Р-329 с встроенным гальванометром. Испытание электрической прочности трансформаторного масла про- изводят на аппаратах АИ-80 согласно требованиям ГОСТ 6581—75.
Измерение тока и потерь холостого хода. Ток и потери холостого
хода трансформатора определяют при опыте холостого хода, когда к одной из обмоток трансформатора (обычно НН) при разомкнутых других обмотках подводят номинальное напряжение номинальной частоты и практически синусоидальной формы.
Номинальные значения потерь ∆Р0 и тока холостого хода для
трансформаторов с напряжением до 35 кВ включительно и мощностью
25—630 кВ∙А оговорены в ГОСТ 12022—76, а для трансформаторов мощностью 1000—6300 кВ∙A — в ГОСТ 11920—93.
Результаты измерений считают удовлетворительными, если ток холостого хода не превышает более чем на 30%, а его потери — более чем на 15% нормативных значений. Возрастание потерь холостого хода — следствие неудовлетворительной межлистовой изоляции; тока холостого хода — увеличенных зазоров в стыках. Замыкание много- параллельных обмоток может привести к увеличению потерь холосто- го хода до полуторакратного значения потерь в магнитной системе без существенного изменения тока холостого хода.
Проверка коэффициента трансформации. Коэффициентом трансформации пары обмоток называют отношение номинального напряжения обмотки (или ее ответвления) более высокого напряже- ния к номинальному напряжению обмотки (или ее ответвления) бо- лее низкого напряжения при холостом ходе трансформатора. Для его определения пользуются методом двух вольтметров. ГОСТ 11677—85 устанавливает допуск на отклонение фактического коэффициента трансформации от расчетного в 0,5%.
Проверка группы соединения обмоток. Под группой соединения понимают угловое смещение векторов линейных ЭДС обмоток ВН и НН, деленное на 30°. В соответствии с ГОСТ 11677—85 приняты сле- дующие схемы и группы соединения двухобмоточных трансформато- ров: «звезда» / «звезда с нулем» — 0; «звезда» / «треугольник» — 11;«звезда с нулем» / «треугольник» — 11; «звезда» / «зигзаг с нулем» — 11; «треугольник» / «звезда с нулем» — 11.
При проверке группы соединения обмоток выявляют дефекты, вы- званные неправильным направлением намотки, неправильной сборкой схемы, неправильным подсоединением обмоток к линейным выводам.
Для проверки группы соединения трехфазного двухобмоточного трансформатора соединяют проводником вывод А обмотки ВН и вывод а обмотки НН. К обмотке ВН подводят по- ниженное симметричное на- пряжение. Затем измеряют на- пряжение на выводах Вв, Вс, Сс и Св. Последние могут быть больше (Б), равны (Р) или меньше (М) напряжения, под- считываемого по выражению:U = U2√(k2 +1), где U2 — линей- ное напряжение на выводах об- мотки НН (находят по опыту), В; k — коэффициент трансформа- ции испытуемого трансформа- тора. По табл. 3.13 определяют группу соединения обмоток.
Определение группы соединения обмоток. Таблица.3.13.
Группа соединения обмоток |
Результаты измерения напряжения на выводах |
|||
Вв |
Вс |
Сс |
Св |
|
0 |
М |
М |
М |
М |
1 |
М |
Р |
М |
М |
2 |
М |
Б |
М |
М |
3 |
Р |
Б |
Р |
М |
4 |
Б |
Б |
Б |
М |
5 |
Б |
Б |
Б |
Р |
6 |
Б |
Б |
Б |
Б |
7 |
Б |
Р |
Б |
Б |
8 |
Б |
М |
Б |
Б |
9 |
Р |
М |
Р |
Б |
10 |
М |
М |
М |
Б |
11 |
М |
М |
М |
Р |
Измерение напряжения (Uк) и потерь короткого замыкания
(∆Рк ) производят в опыте короткого замыкания. При этом обмотку НН замыкают накоротко, к обмотке ВН подводят такое напряжение но- минальной частоты, при котором в обмотках устанавливаются номи-
нальные токи.
ГОСТ 11677—85, устанавливает следующие допуски: на потери и на напряжение КЗ ±10%. При несоответствии напряжения КЗ расчетному причину следует искать в геометрических размерах обмоток.
Испытание электрической прочности главной изоляции транс- форматора (изоляции между обмотками) производят повышенным напряжением номинальной частоты. Испытательное напряжение для силовых трансформаторов, заполненных маслом (ГОСТ 1516.1—76),
прикладывается между замкну- той накоротко испытываемой обмоткой и заземленным баком, к которому присоединены все другие обмотки трансформато- ра и магнитопровод (рис. 16.1)где TV1 — регулировочный автотранс- форматор; TV2 — измерительный трансформатор; R — токоограни- чивающий защитный резистор; ТV3 — испытываемый трансформатор.. Сначала испытывают обмотку НН, затем ВН.Трансформатор считается выдержавшим испытание, если в течение 1 мин не произошло пробоя изоляции (по звуку), вы- деления газа и дыма или сни- жения испытательного напря- жения. Испытание витковой изоляции (между витками, слоями и отдельными секция- ми) проводят индуцированным напряжением в опыте холостого хода, подавая на выводе обмотки ННнапряжение, равное 1,3 от номинального, в течение 1 мин.
Испытание бака трансформатора. В соответствии с ГОСТ
11677—85 баки трансформаторов испытывают после полной сборки и заливки трансформаторов: мощностью до 630 кВ∙А — давлением столба масла 3 м над расширителем в течение 5 мин при температуре масла
10—35 °С; мощностью 1000—6300 кВ А — давлением столба масла вы-
сотой 1,5 м над верхним уровнем крышки при температуре масла 20— 60
°С. Результаты испытания считают удовлетворительными, если на наружных частях бака и в уплотнениях не обнаружено течи масла.
Рис.3.13. Принципиальная схема испытания электрической прочности главной изоляции трансформатора
