
- •4. Биологические функции белков. Роль пространственной организации полипептидной цепи в образовании активных центров. Взаимодействие белков с лигандами. Денатурация белков.
- •5. Строение и биологическая роль нуклеотидов.
- •6. Первичная и вторичная структуры днк. Правила Чаргаффа. Принцип комплементарности. Типы связей в молекуле днк. Биологическая роль днк. Молекулярные болезни - следствие генных мутаций.
- •7. Первичная и вторичная структуры рнк. Типы рнк: особенности строения. Основные компоненты белоксинтезирующей системы. Функция рибосом. Адапторная функция тРнк и роль мРнк в синтезе белка.
- •8. Биосинтез днк (репликация) и мРнк (транскрипция). Процессы "созревания" первичного транскрипта при образовании мРнк.
- •11. Роль ферментов в метаболизме. Наследственные энзимопатии в раннем детском возрасте.Многообразие ферментов. Специфичность действия ферментов. Классификация ферментов. Изоферменты, мультиферменты.
- •12. Свойства ферментов. Зависимость скорости ферментативной реакции от концентрации фермента и субстрата, температуры и рН среды.
- •14. Основные механизмы регуляции действия ферментов и их роль в регуляции метаболизма. Проферменты.
- •23. Молоко как продукт питания. Основные компоненты женского и коровьего молока. Преимущества грудного вскармливания детей.
- •24. Неорганические метаболиты: натрий, калий, медь, цинк, магний, фтор, йод, селен, сульфат, роль в организме.
- •26. Жирорастворимые витамины а, е и к – биологическая роль, пищевые источники, причины и проявления гипо- и гипервитаминоза.
- •27. Витамин d. Образование активной формы витамина из провитамина. Биологическая роль. Нарушения обмена при недостаточности витамина d3 у детей.
- •28. Витамин b1 — коферментные функции, биологическая роль, суточная потребность, пищевые источники, строение, нарушения обмена при недостаточности тиамина.
- •29. Витамин b2 — коферментные функции, биологическая роль, суточная потребность, пищевые источники, строение.
- •30. Витамин рр — коферментные функции, биологическая роль, суточная потребность, пищевые источники, строение.
- •31. Витамин b6 —коферментные функции, биологическая роль, пищевые источники, строение. Потребность в витамине b6 в зависимости от качественного состава пищевого рациона.
- •33. Витамин b12 – биологическая роль, суточная потребность, источники. Причины недостаточности витаминаB12 в организме и ее проявления. Роль "внутреннего фактора Касла" в усвоении витамина b12.
- •34. Витамин с – биологическая роль, суточная потребность, пищевые источники, строение, нарушения обмена при недостаточности аскорбиновой кислоты.
- •35. Безопасность пищи. Химические и биологические загрязнители, их влияние на обмен веществ. Метаболизм этанола.
- •38. Ацетил-КоА: источники и основные пути использования в тканях. Компартментализация обмена ацетил-КоА.
- •39. Цикл трикарбоновых кислот: последовательность реакций, характеристика ферментов. Амфиболическая функция цитратного цикла. Связь с обменом углеводов, жиров и белков.
- •42. Образование и пути использования глюкозо-6-фосфата в организме. Особенности обмена глюкозо-6-фосфата в различных тканях, обусловленные функциональными различиями этих тканей.
- •44. Дихотомический аэробный распад глюкозы: схема последовательности реакций, значение. Энергетический баланс аэробного окисления глюкозы.
- •45. Пентозофосфатный путь превращений глюкозы. Реакции окислительного этапа. Роль пентозофосфатного пути в различных тканях.
- •48. Принципы построения биологических мембран. Роль основных компонентов (липидов, белков, углеводов) в структурной организации и функционировании мембран.
- •49. Липиды-амфипаты: представители, способность к агрегации, образованию мицелл, бислоев. Полярные липиды как компоненты биомембран и липопротеинов.
- •9.5.3. Перенос через мембраны частиц и высокомолекулярных соединений
- •51. Окисление высших жирных кислот. Последовательность реакций b-окисления. Связь окисления жирных кислот с цитратным циклом и дыхательной цепью. Биологическая роль.
- •52. Биосинтез жирных кислот в тканях: последовательность реакций, биологическая роль. Компартментализация и регуляция обмена жирных кислот.
- •53. Биосинтез ацилглицеролов и фосфолипидов: последовательность реакций, значение. Липотропный эффект фосфолипидов, роль в предупреждении жирового перерождения печени.
- •54. Биосинтез и использование кетоновых тел. Гиперкетонемия: причины механизм развития и последствия.
- •55. Обмен и функции холестерола. Нарушения обмена холестерола.
- •1) Инициация: образование свободного радикала (l•)
- •2) Развитие цепи:
- •3) Разрушение структуры липидов
- •58. Непрямое дезаминирование аминокислот. Роль глутаматдегидрогеназы и глутаминовой кислоты. Реакции трансаминирования, ферменты, биологическое значение.
- •59. Декарбоксилирование аминокислот. Образование биогенных аминов — гистамина, серотонина, гамк. Роль биогенных аминов в регуляции метаболизма и функций. Распад биогенных аминов.
- •60. Источники образования аммиака и пути его обезвреживания в организме. Связывание аммиака в местах образования и транспорт в печень. Особенности детоксикации аммиака у детей первого года жизни.
- •61. Биосинтез мочевины. Связь орнитинового цикла с превращениями фумаровой и аспарагиновой кислот. Причины гипераммониемии. Уремия как следствие нарушения выведения мочевины из организма.
- •62. Обмен глутамата и аспартата, роль в азотистом обмене, распад до конечных продуктов.
- •63. Роль серина и глицина в образовании одноуглеродных групп и их использование в биологических синтезах. Участие тгфк в этих процессах.
- •64. Метионин и s-аденозилметионин: строение, участие в процессах трансметилирования. Регенерация s-аденозилметионина из гомоцистеина..
- •67. Обмен железа. Суточная потребность, источники, всасывание, транспорт, депонирование, использование в организме, реутилизация железа.
- •69. Регуляция метаболизма. Иерархия регуляторных систем. Значение эндокринной системы. Роль гормонов гипоталамуса и гипофиза.
- •70. Механизм действия дистантных гормонов. Роль мембраносвязанных ферментов в передаче внешнего сигнала внутрь клетки.
- •71. Циклический аденозинмонофосфат – строение, синтез, распад, роль в клетке. Факторы, влияющие на синтез и распад циклического аденозинмонофосфата.
- •72. Гормоны передней доли гипофиза - строение, механизм действия, биологическая роль. Последствия нарушений функции гипофиза в разные возрастные периоды.
- •73. Гормоны задней доли гипофиза: вазопрессин и окситоцин. Строение, механизм действия, биологическая роль. Последствия нарушения продукции вазопрессина.
- •74. Инсулин - строение, образование из проинсулина, регуляция секреции инсулина, взаимодействие инсулина с рецептором.
- •75. Изменения активности внутриклеточных ферментов под действием инсулина, влияние инсулина на обмен веществ.
- •76. Глюкагон - строение, факторы, влияющие на секрецию, механизм действия и биологическая роль
- •77. Биохимические изменения при сахарном диабете. Метаболические механизмы развития осложнений при сахарном диабете. Последствия длительной гипергликемии. Особенности сахарного диабета у детей.
- •1. Инсулинзависимый сахарный диабет
- •2. Инсулинонезависимый сахарный диабет
- •1. Симптомы сахарного диабета
- •2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
- •3. Поздние осложнения сахарного диабета
- •78. Адреналин - механизм действия и биологическая роль, строение, реакции образования адреналина из тирозина.
- •79. Глюкокортикоиды – образование, механизм действия, биологическая роль, строение. Метаболические изменения при избытке глюкокортикоидов.
- •80. Минералокортикоиды – механизм действия, биологическая роль, строение. Метаболические изменения при избытке и недостатке минералокортикоидов.
- •81. Иодтиронины - строение, синтез, механизм действия, биологическая роль. Гипо- и гипертиреозы.
- •82. Паратгормон и кальцитонин, строение, механизм действия, биологическая роль. Гипер- и гипопаратиреозы.
- •29.4.3. Нарушения гормональной функции паращитовидных желёз.
- •83. Ренин-ангиотензиновая система, роль в регуляции водно-электролитного обмена.
- •84. Половые гормоны - механизм действия, биологическая роль, образование, строение,
- •85. Нарушения функций эндокринных желез: гипер- и гипопродукция гормонов. Примеры заболеваний, связанных с дисфункцией эндокринных желез.
- •87. Низкомолекулярные азотсодержащие вещества крови ("остаточный азот'') и диагностическое значение их определения. Гиперазотемия (ретенционная и продукционная).
- •88. Буферные системы крови и кислотно-основное состояние (кос). Роль дыхательной и выделительной систем в поддержании кос. Нарушения кислотно-основного баланса. Особенности регуляции кос у детей.
- •90. Характеристика основных факторов гемокоагуляции. Свертывание крови как каскад реакций активации проферментов путем протеолиза. Биологическая роль витамина к. Гемофилии.
- •91. Роль печени в углеводном обмене. Источники глюкозы крови и пути метаболизма глюкозы в печени. Уровень глюкозы в крови в раннем детском возрасте.
- •92. Роль печени в обмене липидов.
- •93. Роль печени в азотистом обмене. Пути использования фонда аминокислот в печени. Особенности в детском возрасте.
- •94. Компартментализация метаболических процессов в печени. Регуляция направления потока метаболитов через мембраны внутриклеточных (субклеточных) структур. Значение в интеграции обмена веществ.
- •5. Фазы метаболизма ксенобиотиков.
- •97. Роль почек в поддержании гомеостаза организма. Механизмы ультрафильтрации, канальцевой реабсорбции и секреции. Гормоны, влияющие на диурез. Физиологическая протеинурия и креатинурия у детей.
- •34.2. Механизмы процессов ультрафильтрации, канальцевой реабсорбции и секреции в почках.
- •34.3. Гормональные механизмы регуляции почечной функции
- •98. Важнейшие биополимеры соединительной ткани и межклеточного матрикса (коллаген, эластин, протеогликаны), состав, пространственная структура, биосинтез, функции.
- •99. Особенности обмена в скелетных мышцах и миокарде: характеристика основных белков, молекулярные механизмы мышечного сокращения, энергетическое обеспечение мышечного сокращения.
- •100. Особенности обмена в нервной ткани. Биологически активные молекулы нервной ткани.
- •102. Диагностическое значение определения метаболитов в крови и моче.
99. Особенности обмена в скелетных мышцах и миокарде: характеристика основных белков, молекулярные механизмы мышечного сокращения, энергетическое обеспечение мышечного сокращения.
Мышечная ткань составляет 40–42% от массы тела. Основная динамическая функция мышц – обеспечить подвижность путем сокращения и последующего расслабления. При сокращении мышц осуществляется работа, связанная с превращением химической энергии в механическую.
Различают три типа мышечной ткани: скелетную, сердечную и гладкую мышечную ткань.
Существует также деление на гладкие и поперечно-полосатые (исчерченные) мышцы. К поперечно-полосатым мышцам, помимо скелетных, относятся мышцы языка и верхней трети пищевода, внешние мышцы глазного яблока и некоторые другие. Морфологически миокард относится к поперечно-полосатой мускулатуре, но по ряду других признаков он занимает промежуточное положение между гладкими и поперечно-полосатыми мышцами.
МОРФОЛОГИЧЕСКАЯ ОРГАНИЗАЦИЯ ПОПЕРЕЧНО-ПОЛОСАТОЙ МЫШЦЫ
Поперечно-полосатая мышца состоит из многочисленных удлиненных волокон , или мышечных клеток. Двигательные нервы входят в различных точках в мышечное волокно и передают ему электрический импульс, вызывающий сокращение. Мышечное волокно обычно рассматривают как многоядерную клетку гигантских размеров, покрытую эластичной оболочкой – сарколеммой (рис. 20.1). Диаметр функционально зрелого поперечно-полосатого мышечного волокна обычно составляет от 10 до 100 мкм, а длина волокна часто соответствует длине мышцы.
В каждом мышечном волокне в полужидкой саркоплазме по длине волокна расположено, нередко в форме пучков, множество нитевидных образований – миофибрилл (толщина их обычно менее 1 мкм), обладающих, как и все волокно в целом, поперечной исчерченностью. Поперечная исчерченность волокна, зависящая от оптической неоднородности белковых веществ, локализованных во всех миофибриллах на одном уровне, легко выявляется при исследовании волокон скелетных мышц в поляризационном или фазово-контрастном микроскопе.
В мышечной ткани взрослых животных и человека содержится от 72 до 80% воды. Около 20–28% от массы мышцы приходится на долю сухого остатка, главным образом белков. Помимо белков, в состав сухого остатка входят гликоген и другие углеводы, различные липиды, экстрактивные азотсодержащие вещества, соли органических и неорганических кислот и другие химические соединения.
Повторяющимся элементом поперечно-полосатой миофибриллы является саркомер – участок миофибриллы, границами которого служат узкие Z-линии. Каждая миофибрилла состоит из нескольких сот саркомеров. Средняя длина саркомера 2,5–3,0 мкм. В середине саркомера находится зона протяженностью 1,5–1,6 мкм, темная в фазово-контрастном микроскопе. В поляризованном свете она дает сильное двойное лучепреломление. Эту зону принято называть диском А (анизотропный диск). В центре диска А расположена линия М, которую можно наблюдать только в электронном микроскопе. Среднюю часть диска А занимает зона Н более слабого двойного лучепреломления. Наконец, существуют изотропные диски, или диски I, с очень слабым двойным лучепреломлением. В фазово-контраст-ном микроскопе они кажутся более светлыми, чем диски А. Длина дисков I около 1 мкм. Каждый из них разделен на две равные половины Z-мембраной, или Z-линией.
Белки, входящие в состав саркоплазмы, относятся к протеинам, растворимым в солевых средах с низкой ионной силой. Принятое ранее подразделение саркоплазматических белков на миоген, глобулин X, миоальбумин и белки-пигменты в значительной мере утратило смысл, поскольку существование глобулина X и миогена как индивидуальных белков в настоящее время отрицается. Установлено, что глобулин X представляет собой смесь различных белковых веществ со свойствами глобулинов. Термин «миоген» также является собирательным понятием. В частности, в состав белков группы миогена входит ряд протеинов, наделенных ферментативной активностью: например, ферменты гликолиза. К числу саркоплазмати-ческих белков относятся также дыхательный пигмент миоглобин и разнообразные белки-ферменты, локализованные главным образом в митохондриях и катализирующие процессы тканевого дыхания, окислительного фосфорилирования, а также многие стороны азотистого и липидного обмена. Недавно была открыта группа саркоплазматических белков – пар-вальбумины, которые способны связывать ионы Са2+. Их физиологическая роль остается еще неясной.
К группе миофибриллярных белков относятся миозин, актин и актомио-зин – белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц.
Рассмотрим, к чему сводятся представления о механизме попеременного сокращения и расслабления мышц. В настоящее время принято считать, что биохимический цикл мышечного сокращения состоит из 5 стадий (рис. 20.8):
1) миозиновая «головка» может гидролизовать АТФ до АДФ и Н3РО4 (Pi), но не обеспечивает освобождения продуктов гидролиза. Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис.);
2) содержащая АДФ и Н3РО4 миозиновая «головка» может свободно вращаться под большим углом и (при достижении нужного положения) связываться с F-актином, образуя с осью фибриллы угол около 90° (см. рис.);
3) это взаимодействие обеспечивает высвобождение АДФ и Н3РО4 из актин-миозинового комплекса. Актомиозиновая связь имеет наименьшую энергию при величине угла 45°, поэтому изменяется угол миозина с осью фибриллы с 90° на 45° (примерно) и происходит продвижение актина (на 10–15 нм) в направлении центра саркомера (см. рис.);
4) новая молекула АТФ связывается с комплексом миозин–F-актин
5) комплекс миозин–АТФ обладает низким сродством к актину, и поэтому происходит отделение миозиновой (АТФ) «головки» от F-актина. Последняя стадия и есть собственно расслабление, которое отчетливо зависит от связывания АТФ с актин-миозиновым комплексом (см. рис. 20.8, д). Затем цикл возобновляется.