
- •4. Биологические функции белков. Роль пространственной организации полипептидной цепи в образовании активных центров. Взаимодействие белков с лигандами. Денатурация белков.
- •5. Строение и биологическая роль нуклеотидов.
- •6. Первичная и вторичная структуры днк. Правила Чаргаффа. Принцип комплементарности. Типы связей в молекуле днк. Биологическая роль днк. Молекулярные болезни - следствие генных мутаций.
- •7. Первичная и вторичная структуры рнк. Типы рнк: особенности строения. Основные компоненты белоксинтезирующей системы. Функция рибосом. Адапторная функция тРнк и роль мРнк в синтезе белка.
- •8. Биосинтез днк (репликация) и мРнк (транскрипция). Процессы "созревания" первичного транскрипта при образовании мРнк.
- •11. Роль ферментов в метаболизме. Наследственные энзимопатии в раннем детском возрасте.Многообразие ферментов. Специфичность действия ферментов. Классификация ферментов. Изоферменты, мультиферменты.
- •12. Свойства ферментов. Зависимость скорости ферментативной реакции от концентрации фермента и субстрата, температуры и рН среды.
- •14. Основные механизмы регуляции действия ферментов и их роль в регуляции метаболизма. Проферменты.
- •23. Молоко как продукт питания. Основные компоненты женского и коровьего молока. Преимущества грудного вскармливания детей.
- •24. Неорганические метаболиты: натрий, калий, медь, цинк, магний, фтор, йод, селен, сульфат, роль в организме.
- •26. Жирорастворимые витамины а, е и к – биологическая роль, пищевые источники, причины и проявления гипо- и гипервитаминоза.
- •27. Витамин d. Образование активной формы витамина из провитамина. Биологическая роль. Нарушения обмена при недостаточности витамина d3 у детей.
- •28. Витамин b1 — коферментные функции, биологическая роль, суточная потребность, пищевые источники, строение, нарушения обмена при недостаточности тиамина.
- •29. Витамин b2 — коферментные функции, биологическая роль, суточная потребность, пищевые источники, строение.
- •30. Витамин рр — коферментные функции, биологическая роль, суточная потребность, пищевые источники, строение.
- •31. Витамин b6 —коферментные функции, биологическая роль, пищевые источники, строение. Потребность в витамине b6 в зависимости от качественного состава пищевого рациона.
- •33. Витамин b12 – биологическая роль, суточная потребность, источники. Причины недостаточности витаминаB12 в организме и ее проявления. Роль "внутреннего фактора Касла" в усвоении витамина b12.
- •34. Витамин с – биологическая роль, суточная потребность, пищевые источники, строение, нарушения обмена при недостаточности аскорбиновой кислоты.
- •35. Безопасность пищи. Химические и биологические загрязнители, их влияние на обмен веществ. Метаболизм этанола.
- •38. Ацетил-КоА: источники и основные пути использования в тканях. Компартментализация обмена ацетил-КоА.
- •39. Цикл трикарбоновых кислот: последовательность реакций, характеристика ферментов. Амфиболическая функция цитратного цикла. Связь с обменом углеводов, жиров и белков.
- •42. Образование и пути использования глюкозо-6-фосфата в организме. Особенности обмена глюкозо-6-фосфата в различных тканях, обусловленные функциональными различиями этих тканей.
- •44. Дихотомический аэробный распад глюкозы: схема последовательности реакций, значение. Энергетический баланс аэробного окисления глюкозы.
- •45. Пентозофосфатный путь превращений глюкозы. Реакции окислительного этапа. Роль пентозофосфатного пути в различных тканях.
- •48. Принципы построения биологических мембран. Роль основных компонентов (липидов, белков, углеводов) в структурной организации и функционировании мембран.
- •49. Липиды-амфипаты: представители, способность к агрегации, образованию мицелл, бислоев. Полярные липиды как компоненты биомембран и липопротеинов.
- •9.5.3. Перенос через мембраны частиц и высокомолекулярных соединений
- •51. Окисление высших жирных кислот. Последовательность реакций b-окисления. Связь окисления жирных кислот с цитратным циклом и дыхательной цепью. Биологическая роль.
- •52. Биосинтез жирных кислот в тканях: последовательность реакций, биологическая роль. Компартментализация и регуляция обмена жирных кислот.
- •53. Биосинтез ацилглицеролов и фосфолипидов: последовательность реакций, значение. Липотропный эффект фосфолипидов, роль в предупреждении жирового перерождения печени.
- •54. Биосинтез и использование кетоновых тел. Гиперкетонемия: причины механизм развития и последствия.
- •55. Обмен и функции холестерола. Нарушения обмена холестерола.
- •1) Инициация: образование свободного радикала (l•)
- •2) Развитие цепи:
- •3) Разрушение структуры липидов
- •58. Непрямое дезаминирование аминокислот. Роль глутаматдегидрогеназы и глутаминовой кислоты. Реакции трансаминирования, ферменты, биологическое значение.
- •59. Декарбоксилирование аминокислот. Образование биогенных аминов — гистамина, серотонина, гамк. Роль биогенных аминов в регуляции метаболизма и функций. Распад биогенных аминов.
- •60. Источники образования аммиака и пути его обезвреживания в организме. Связывание аммиака в местах образования и транспорт в печень. Особенности детоксикации аммиака у детей первого года жизни.
- •61. Биосинтез мочевины. Связь орнитинового цикла с превращениями фумаровой и аспарагиновой кислот. Причины гипераммониемии. Уремия как следствие нарушения выведения мочевины из организма.
- •62. Обмен глутамата и аспартата, роль в азотистом обмене, распад до конечных продуктов.
- •63. Роль серина и глицина в образовании одноуглеродных групп и их использование в биологических синтезах. Участие тгфк в этих процессах.
- •64. Метионин и s-аденозилметионин: строение, участие в процессах трансметилирования. Регенерация s-аденозилметионина из гомоцистеина..
- •67. Обмен железа. Суточная потребность, источники, всасывание, транспорт, депонирование, использование в организме, реутилизация железа.
- •69. Регуляция метаболизма. Иерархия регуляторных систем. Значение эндокринной системы. Роль гормонов гипоталамуса и гипофиза.
- •70. Механизм действия дистантных гормонов. Роль мембраносвязанных ферментов в передаче внешнего сигнала внутрь клетки.
- •71. Циклический аденозинмонофосфат – строение, синтез, распад, роль в клетке. Факторы, влияющие на синтез и распад циклического аденозинмонофосфата.
- •72. Гормоны передней доли гипофиза - строение, механизм действия, биологическая роль. Последствия нарушений функции гипофиза в разные возрастные периоды.
- •73. Гормоны задней доли гипофиза: вазопрессин и окситоцин. Строение, механизм действия, биологическая роль. Последствия нарушения продукции вазопрессина.
- •74. Инсулин - строение, образование из проинсулина, регуляция секреции инсулина, взаимодействие инсулина с рецептором.
- •75. Изменения активности внутриклеточных ферментов под действием инсулина, влияние инсулина на обмен веществ.
- •76. Глюкагон - строение, факторы, влияющие на секрецию, механизм действия и биологическая роль
- •77. Биохимические изменения при сахарном диабете. Метаболические механизмы развития осложнений при сахарном диабете. Последствия длительной гипергликемии. Особенности сахарного диабета у детей.
- •1. Инсулинзависимый сахарный диабет
- •2. Инсулинонезависимый сахарный диабет
- •1. Симптомы сахарного диабета
- •2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
- •3. Поздние осложнения сахарного диабета
- •78. Адреналин - механизм действия и биологическая роль, строение, реакции образования адреналина из тирозина.
- •79. Глюкокортикоиды – образование, механизм действия, биологическая роль, строение. Метаболические изменения при избытке глюкокортикоидов.
- •80. Минералокортикоиды – механизм действия, биологическая роль, строение. Метаболические изменения при избытке и недостатке минералокортикоидов.
- •81. Иодтиронины - строение, синтез, механизм действия, биологическая роль. Гипо- и гипертиреозы.
- •82. Паратгормон и кальцитонин, строение, механизм действия, биологическая роль. Гипер- и гипопаратиреозы.
- •29.4.3. Нарушения гормональной функции паращитовидных желёз.
- •83. Ренин-ангиотензиновая система, роль в регуляции водно-электролитного обмена.
- •84. Половые гормоны - механизм действия, биологическая роль, образование, строение,
- •85. Нарушения функций эндокринных желез: гипер- и гипопродукция гормонов. Примеры заболеваний, связанных с дисфункцией эндокринных желез.
- •87. Низкомолекулярные азотсодержащие вещества крови ("остаточный азот'') и диагностическое значение их определения. Гиперазотемия (ретенционная и продукционная).
- •88. Буферные системы крови и кислотно-основное состояние (кос). Роль дыхательной и выделительной систем в поддержании кос. Нарушения кислотно-основного баланса. Особенности регуляции кос у детей.
- •90. Характеристика основных факторов гемокоагуляции. Свертывание крови как каскад реакций активации проферментов путем протеолиза. Биологическая роль витамина к. Гемофилии.
- •91. Роль печени в углеводном обмене. Источники глюкозы крови и пути метаболизма глюкозы в печени. Уровень глюкозы в крови в раннем детском возрасте.
- •92. Роль печени в обмене липидов.
- •93. Роль печени в азотистом обмене. Пути использования фонда аминокислот в печени. Особенности в детском возрасте.
- •94. Компартментализация метаболических процессов в печени. Регуляция направления потока метаболитов через мембраны внутриклеточных (субклеточных) структур. Значение в интеграции обмена веществ.
- •5. Фазы метаболизма ксенобиотиков.
- •97. Роль почек в поддержании гомеостаза организма. Механизмы ультрафильтрации, канальцевой реабсорбции и секреции. Гормоны, влияющие на диурез. Физиологическая протеинурия и креатинурия у детей.
- •34.2. Механизмы процессов ультрафильтрации, канальцевой реабсорбции и секреции в почках.
- •34.3. Гормональные механизмы регуляции почечной функции
- •98. Важнейшие биополимеры соединительной ткани и межклеточного матрикса (коллаген, эластин, протеогликаны), состав, пространственная структура, биосинтез, функции.
- •99. Особенности обмена в скелетных мышцах и миокарде: характеристика основных белков, молекулярные механизмы мышечного сокращения, энергетическое обеспечение мышечного сокращения.
- •100. Особенности обмена в нервной ткани. Биологически активные молекулы нервной ткани.
- •102. Диагностическое значение определения метаболитов в крови и моче.
64. Метионин и s-аденозилметионин: строение, участие в процессах трансметилирования. Регенерация s-аденозилметионина из гомоцистеина..
Метильная группа метионина, связанная с атомом серы, также представляет собой подвижную одноуглеродную группу, способную участвовать в реакциях трансметилирования (переноса метильной группы). Активной формой метионина, принимающей непосредственное участие в этих превращениях, является S-аденозилметионин, который образуется при взаимодействии метионина с АТФ.
Примеры реакций трансметилирования с участием S-аденозилметионина приводятся в таблице 25.1.
Таблица 25.1
Использование метильной группы S-аденозилметионина в реакциях трансметилирования
Субстрат |
Метилированный продукт |
Норадреналин |
Адреналин |
Адреналин |
Метоксиадреналин |
Гуанидинацетат |
Креатин |
Карнозин |
Ансерин |
Гистамин |
N-метилгистамин |
Фосфатидилэтаноламин |
Фосфатидилхолин |
Вот некоторые примеры этих реакций.
1) Образование фосфатидилхолина из фосфатидилэтаноламина - ключевая реакция синтеза фосфолипидов:
Фосфатидилхолин – главный фосфолипидный компонент биологических мембран; он входит в состав липопротеинов, принимает участие в транспорте холестерола и триацилглицеролов; нарушение синтеза фосфатидилхолина в печени приводит к жировой инфильтрации.
2) Образование адреналина из норадреналина - заключительная реакция синтеза гормона мозгового вещества надпочечников:
Адреналин выделяется в кровь при эмоциональном стрессе и участвует в регуляции углеводного и липидного обмена в организме.
3) Реакции метильной конъюгации - один из этапов обезвреживания чужеродных соединений и эндогенных биологически активных веществ:
В результате метилирования блокируются реакционноспособные SH- и NН-группы субстратов. Продукты реакции не обладают активностью и выводится из организма с мочой.
25.2.3. После отдачи метильной группы S-аденозилметионин превращается в S-аденозилгомоцистеин. Последний расщепляется на аденозин и гомоцистеин. Гомоцистеин может вновь превращаться в метионин за счёт метильной группы 5-метил-ТГФК (см. предыдущий параграф):
В этой реакции в качестве кофермента участвует метилкобаламин – производное витамина В12. При недостатке витамина В12 нарушается синтез метионина из гомоцистеина и накапливается 5-метил-ТГФК. Так как реакция образования 5-метил-ТГФК из 5,10-метилен-ТГФК необратима, одновременно возникает дефицит фолиевой кислоты.
25.2.4. Другим путём использования гомоцистеина, как уже упоминалось, является участие в синтезе цистеина. Биологическая роль цистеина:
входит в состав белка, где может образовывать дисульфидные связи, стабилизирующие пространственную структуру макромолекулы;
участвует в синтезе глутатиона, причём цистеиновая SH-группа определяет реакционную способность этого кофермента;
является предшественником тиоэтаноламина в молекуле HS-КоА;
служит предшественником таурина в конъюгированных желчных кислотах;
является источником атома серы в органических сульфатах (хондроитинсульфат, гепарин, ФАФС).
65. Обмен фенилаланина и тирозина. Использование тирозина для синтеза катехоламинов, тироксина, меланинов. Распад тирозина до конечных продуктов. Наследственные нарушения обмена фенилаланина и тирозина (фенилкетонурия, алкаптонурия, альбинизм).
Обмен фенилаланина и тирозина в тканях человека можно представить в следующем виде (см. рисунок 25.1).
Рисунок 25.1. Пути обмена фенилаланина и тирозина в тканях (цифрами обозначены наиболее часто встречающиеся дефекты ферментов; далее приводится характеристика этих нарушений).
25.4.2. Известен ряд врождённых нарушений обмена фенилаланина и тирозина.
Фенилкетонурия – врождённое нарушение процесса гидроксилирования фенилаланина до тирозина. Заболевание чаще всего вызвано отсутствием или недостатком фермента фенилаланингидроксилазы (обозначен цифрой 1 на рисунке 25.1), реже - нарушением образования тетрагидробиоптерина.
Ранними симптомами фенилкетонурии являются повышенная возбудимость и двигательная активность, рвота и трудности вскармливания, с 3 – 5-го месяца нарушается интеллектуальное развитие, исчезает реакция на окружающее. Со временем у детей появляются судороги. Волосы и глаза обычно менее пигментированы, чем у других членов семьи. При отсутствии лечения продолжительность жизни больных составляет 20 - 30 лет.
Биохимическая основа фенилкетонурии – накопление фенилаланина в организме. Высокая концентрация аминокислоты стимулирует выработку фермента, превращающего фенилаланин вфенилпируват (в норме этот фермент малоактивен). Путём восстановления фенилпируват переходит в фениллактат, а путём декарбоксилирования – в фенилацетат. Эти продукты наряду с фенилаланином в существенных количествах обнаруживаются в моче больных.
В настоящее время имеются достоверные свидетельства того, что за токсическое повреждение мозга ответственны главным образом высокие концентрации фенилаланина. Повышенное содержание фенилаланина тормозит транспорт тирозина и других аминокислот через биологические мембраны. Это приводит к ограничению синтеза белка в клетках мозга и нарушению синтеза нейромедиаторов.
Раннюю диагностику заболевания нельзя провести исходя только из клинической симптоматики. Диагноз ставится биохимически путём скрининга всех новорождённых. Лечение больных фенилкетонурией основано на ограничении поступления фенилаланина в организм и снижения концентрации этой аминокислоты в плазме. С этой целью используются искусственные питательные смеси, в которых фенилаланин отсутствует (например, берлофен).
Алкаптонурия – врожденное нарушение обмена фенилаланина, вызванное отсутствием фермента оксидазы гомогентизиновой кислоты (цифра 2 на рисунке 25.1). Это приводит к нарушению образования малеилацетоацетата, расщепляющегося далее до фумарата и ацетоацетата. В раннем детском возрасте единственным проявлением дефицита фермента является изменение окраски мочи. Гомогентизиновая кислота секретируется в просвет канальцев и в значительном количестве выводится с мочой. На воздухе она окисляется, а затем полимеризуется в окрашенное соединение, которое окрашивает пелёнки в чёрный цвет. Экскреция гомогентизиновой кислоты зависит от содержания фенилаланина и тирозина в пище.
Следствием накопления гомогентизиновой кислоты в организме является охроноз - шиферно-голубой оттенок ушного и носового хрящей, вызванный накоплением в них пигмента. Развитие охроноза можно предотвратить, если с раннего возраста ограничивать поступление с пищей фенилаланина и тирозина.
Альбинизм развивается при отсутствии в пигментных клетках фермента тирозиназы (обозначена цифрой 3 на рисунке 25.1), которая участвует в образовании меланина. В результате волосы, кожа и глаза больного лишены этого пигмента. При альбинизме наблюдается повышение чувствительности к солнечным лучам и некоторое нарушения зрения.
66. Синтез гема и гемоглобина. Распад гемоглобина, обмен желчных пигментов. Нарушения обмена желчных пигментов. Значение определения желчных пигментов в диагностике желтух. Условно физиологическая желтуха новорожденных.
Хромопротеины относятся к сложным белкам. Молекулы хромопротеинов состоят из полипептидных цепей и небелковых компонентов (простетических групп), из которых наиболее распространённым является гем.
26.1.2. Гем в качестве простетической группы содержат следующие белки:
Гемоглобин – присутствует в эритроцитах; в его состав входят 4 полипептидные цепи, с каждой из которых связана одна гемовая группа. Этот белок транспортирует О2 и СО2 в крови.
Миоглобин – присутствует в клетках мышечной ткани; представляет собой одну полипептидную цепь, с которой связана одна гемовая группа. Этот белок запасает кислород в мышцах и отдаёт его при выполнении мышечной работы.
Цитохромы – белки-ферменты, содержатся в митохондриях клеток, участвуют в переносе электронов на кислород в дыхательной цепи.
Пероксидаза и каталаза – белки-ферменты, ускоряют расщепление пероксида водорода Н2О2 на Н2О и О2.
Схема биосинтеза гемоглобина представлена на рисунке 26.1. Исходными веществами в этом метаболическом пути являются аминокислота глицин и метаболит цикла Кребсасукцинил-КоА. Синтез происходит в ретикулоцитах (незрелых эритроцитах, содержащих клеточное ядро). Реакции идут в митохондриях и цитоплазме клеток.
Рисунок 26.1. Биосинтез гемоглобина и его регуляция.
Первая стадия в последовательности реакций, ведущих к синтезу гема, катализируется δ-аминолевулинат-синтазой. Фермент абсолютно специфичен к субстратам; кофакторами фермента являются пиридоксаль-5-фосфат и ионы Mg2+.
Имеются данные о том, что некоторые лекарственные препараты, а также стероидные гормоны, напротив, индуцируют синтез печёночной δ-аминолевулинат-синтазы.
Во второй реакции, катализируемой δ-аминолевулинат-дегидратазой, при конденсации двух молекул δ-аминолевулината образуется порфобилиноген.
В дальнейшем из четырёх молекул порфобилиногена в результате ряда сложных ферментативных реакций образуется протопорфирин IX – непосредственный предшественник гема. При участии митохондриального фермента феррохелатазы двухвалентное железо включается в уже готовую структуру протопорфирина. Для протекания этой реакции необходимы аскорбиновая кислота и цистеин в качестве восстановителей. Ингибитором феррохелатазы является свинец. На заключительном этапе происходит соединение гема с белковыми цепями, характерными для синтезируемого хромопротеина. Конечные продукты этого биосинтеза (гем, гемоглобин) подавляют начальные реакции по механизму отрицательной обратной связи (рисунок 9).
При врождённых и приобретённых нарушениях биосинтеза гема развиваются заболевания – порфирии.
26.2.2. Порфирии – группа наследственных заболеваний, обусловленных частичным дефицитом одного из ферментов синтеза гема. Снижение образования гема приводит к снятию его ингибирующего эффекта на начальные этапы биосинтеза, результатом чего является избыточное образование порфиринов и их предшественников. Основными симптомами порфирий являются:
нарушения со стороны центральной нервной системы (т.к. предшественники порфиринов являются нейротоксинами);
повышенная светочувствительность кожи (порфирины накапливаются в коже, поглощают свет и переходят в возбуждённое состояние, вызывая образование токсичных свободных радикалов);
анемия (снижение содержания гемоглобина в крови) ;
порфиринурия - выведение порфиринов с мочой и калом (моча приобретает красную окраску).
Порфиринурия может также развиваться при отравлениях свинцом.
Содержание гемоглобина в крови здоровых людей составляет 130-160 г/л. Гемоглобин крови полностью обновляется в течение 120 дней (продолжительность жизни эритроцита).
Разрушение эритроцитов и начальные этапы катаболизма гема происходят в клетках ретикуло-эндотелиальной системы (РЭС), которые находятся в печени (клетки Купфера), селезёнке, костном мозге. Схема катаболизма гемоглобина в тканях приводится на рисунке 26.3.
Рисунок 26.3. Схема катаболизма гемоглобина в тканях.
26.4.2. Продукты распада гема называют желчными пигментами, так как все они в разных количествах обнаруживаются в желчи. К желчным пигментам относятся: биливердин (зелёного цвета), билирубин (красно-коричневого цвета), уробилиноген и стеркобилиноген (бесцветные), уробилин и стеркобилин (жёлтого цвета). Далее приводятся формулы билирубина и его диглюкуронида.
|
Билирубин (свободный или неконъюгированный билирубин) образуется в клетках ретикуло-эндотелиальной системы (РЭС), транспортируется в гепатоциты. Билирубин нерастворим в воде и растворим в жирах, токсичен, в крови присутствует в виде комплекса с альбумином, не проникает через почечный фильтр. Эта фракция билирубина в плазме крови называется непрямым билирубином, так как взаимодействует с диазореактивом только после осаждения альбуминов. |
|
Билирубиндиглюкуронид (связанный или конъюгированный билирубин) образуется в гепатоцитах под действием фермента билирубин-глюкуронилтрансферазы, путём активного транспорта выводится в желчные канальцы. Он хорошо растворим в воде и не растворим в жирах, малотоксичен, в крови не связан с белками плазмы, может проникать через почечный фильтр. Эта фракция билирубина в плазме крови называется прямым билирубином, так как непосредственно может взаимодействовать с диазореактивом. |
Общее содержание билирубина в крови здорового человека составляет 8 – 20 мкмоль/л, из них 6 – 15 мкмоль/л приходится на непрямой билирубин, 2 – 5 мкмоль/л – на прямой билирубин. Увеличение общего билирубина в крови (более 27 мкмоль/л) приводит к окрашиванию кожи, слизистых оболочек, склеры глаз в жёлтый цвет (желтуха). Определение содержания желчных пигментов в крови используют при выяснении происхождения желтух. Желтуха бывает надпечёночная (гемолитическая), печёночная (паренхиматозная), подпечёночная (обтурационная или механическая).
26.5.2. Надпечёночная (гемолитическая) желтуха вызвана массивным распадом эритроцитов в результате резус-конфликта, попадания в кровь веществ, вызывающих разрушение мембран эритроцитов и некоторых других заболеваниях. При этой форме желтухи в крови повышено содержание непрямого билирубина, в моче повышено содержание стеркобилина, билирубин отсутствует, в кале повышено содержание стеркобилина.
26.5.3. Печёночная (паренхиматозная) желтуха вызвана повреждением клеток печени при инфекциях и интоксикациях. При этой форме желтухи в крови повышено содержание непрямого и прямого билирубина, в моче повышено содержание уробилина, присутствует билирубин, в кале понижено содержание стеркобилина.
26.5.4. Подпечёночная (обтурационная) желтуха вызвана нарушением оттока желчи, например, при закупорке желчевыводящего протока камнем. При этой форме желтухи в крови повышено содержание прямого билирубина (иногда и непрямого), в моче отсутствует стеркобилин, присутствует билирубин, в кале понижено содержание стеркобилина.
26.5.5. Условно физиологическая желтуха новорождённых развивается у большинства здоровых новорождённых в первые дни после рождения и продолжается около двух недель. При различных заболеваниях, возникающих у новорождённых, а также у недоношенных детей желтушный период затягивается. Увеличение длительности гипербилирубинемии может привести к серьёзным последствиям: накоплению билирубина в ткани мозга (ядерная желтуха).
Повышению содержания билирубина в крови новорождённых могут способствовать следующие особенности обмена веществ в их организме:
замена фетального гемоглобина на гемоглобин А. В первые дни после рождения усиливается гемолиз эритроцитов, содержващих HbF; образуются новые эритроциты, содержащие HbA. HbF подвергается катаболизму; образуется значительное количество билирубина;
отвлечение альбуминов плазмы для транспорта жирных кислот. Содержание углеводов в организме новорождённых сравнительно невелико; основным энергетическим субстратом являются жирные кислоты, концентрация которых в крови повышается, жирные кислоты транспортируются в комплексе с альбуминами;
низкая активность глюкуронилтрансферазы в ткани печени. Замедление процессов конъюгации билирубина в печени затрудняет его выведение в кишечник;
стерильность кишечника. В кишечнике новорождённого отсутствует микрофлора, поэтому билирубин не превращается в стеркобилиноген и может происходить его обратное всасывание в кровоток.