Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BIOKhIMIYa_OTVETY-1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.93 Mб
Скачать

33. Витамин b12 – биологическая роль, суточная потребность, источники. При­чины недостаточности витаминаB12 в организме и ее проявления. Роль "внутреннего фактора Касла" в усвоении витамина b12.

 

Витамин В12 - цианкобаламин.

Активная форма: коферменты метилкобаламин и дезоксиаденозилкобаламин. Имеют сложную структуру, в центре которой находится атом кобальта (Со+), соединённый  с четырьмя пиррольными кольцами, образующими корриновоеядро.

Биологическая роль: участвует в реакциях: 1. трансметилирования; 2. обмена серосодержащих аминокислот; 3. образования коферментных форм фолиевой кислоты.

Суточная потребность: 0,003 мг.

Основные пищевые источники: любые продукты животного происхождения.

Гиповитаминоз: мегалобластическая анемия, развивающаяся при нарушении всасывания витамина в кишечнике. Для всасывания витамина В12 в кишечнике, необходим специальный  белокгастромукопротеин (транскоррин), получивший название - внутренний фактор Касла.

Этот белок вырабатывается в желудке, связывает витамин В12 (внешний фактор Касла)  и образовавшийся комплекс всасывается в кишечнике. Любые причины, приводящие к нарушению выработки желудочного гликопротеина  (например, органические поражения желудка, резекция желудка) приводят к гиповитаминозу В12.

 

 

34. Витамин с – биологическая роль, суточная потребность, пищевые источники, строение, нарушения обмена при недостаточности аскорбиновой кислоты.

Витамин С - аскорбиновая кислота.

 Активная форма - неизвестна. 

Биологическая роль: кофактор реакций   гидроксилирования. Например, в реакциях  синтеза: 1. серотонина; 2. оксилизина и оксипролина в коллагене; 3. гомогентизиновой   кислоты. Кроме того, способствует    поступлению железа в кровь из кишечника и высвобождению его из ферритина.  Является антиоксидантом.  Суточная потребность: 50-100 мг.  Гиповитаминоз - болезнь цинга (скорбут). Симптомы: 1. боли в суставах; 2. точечные кровоизлияния - петехии; 3. кровоточивость дёсен; 4. расшатывание зубов; 5. анемия; 6. быстрая утомляемость.

 

35. Безопасность пищи. Химические и биологические загрязнители, их влияние на обмен веществ. Метаболизм этанола.

Важнейшая функция печени - детоксикационная (или барьерная). Она имеет существенное значение для сохранения жизни организма. В печени происходит обезвреживание таких веществ, как билирубин и продукты катаболизма аминокислот в кишечнике, а также инактивируются лекарственные препараты и токсические вещества экзогенного происхождения, NH3 - продукт азотистого обмена, который в результате ферментативных реакций превращается в нетоксичную мочевину, гормоны и биогенные амины.

Вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей организма или как источники энергии, называют чужеродными веществами, или ксенобиотиками. Эти вещества могут попадать в организм с пищей, через кожу или с вдыхаемым воздухом.

Чужеродные вещества, или ксенобиотики, делят на 2 группы:

  • продукты хозяйственной деятельности человека (промышленность, сельское хозяйство, транспорт);

  • вещества бытовой химии - моющие средства, вещества для борьбы с насекомыми, парфюмерия.

Гидрофильные ксенобиотики выводятся из организма в неизменённом виде с мочой, гидрофобные могут задерживаться в тканях, связываясь с белками или образуя комплексы с липидами клеточных мембран. Со временем накопление в клетках тканей чужеродного вещества приведёт к нарушению их функций. Для удаления таких ненужных для организма веществ в процессе эволюции выработались механизмы их детоксикации (обезвреживания) и выведения из организма.

Катаболизм этилового спирта осуществляется главным образом в печени. Здесь окисляется от 75% до 98% введённого в организм этанола.

Окисление алкоголя - сложный биохимический процесс, в который вовлекаются основные метаболические процессы клетки. Превращение этанола в печени осуществляется тремя путями с образованием токсического метаболита – ацетальдегида.

Основную роль в метаболизме этанола играет цинксодержащий NAD+- зависимый фермент - алкогольдегидрогеназа, локализующаяся в основном в цитозоле и митохондриях печени (95%). В ходе реакции происходит дегидрирование этанола, образуются ацетальдегид и восстановленный кофермент NADH.

Алкогольдегидрогеназа катализирует обратимую реакцию, направление которой зависит от концентрации ацетальдегида и соотношения NADH/NAD+ в клетке.

С2Н5ОН + HAD+ ↔ СН3СНО + NADH + H+.

Фермент алкогольдегидрогеназа - димер, состоящий из идентичных или близких по первичной структуре полипептидных цепей, кодируемых аллелями одного гена. Существуют 3 изоформы алкогольдегидрогеназы (АДГ): АДГ1, АДГ2, АДГ3, различающиеся по строению протомеров, локализации и активности. Для европейцев характерно присутствие изоформ АДГ1 и АДГ3. У некоторых восточных народов преобладает изоформа АДГ2, характеризующаяся высокой активностью, это может быть причиной их повышенной чувствительности к алкоголю. При хроническом алкоголизме количество фермента в печени не увеличивается, т.е. он не является индуцируемым ферментом.

Б. Окисление этанола при участии цитохром Р450 - зависимой микросомальной этанолокисляющей системы системы

Цитохром Р450-зависимая микросомальная этанолокисляющая сисгема (МЭОС) локализована в мембране гладкого ЭР гепатоцитов. МЭОС играет незначительную роль в метаболизме небольших количеств алкоголя, но индуцируется этанолом, другими спиртами, лекарствами типа барбитуратов и приобретает существенное значение при злоупотреблении этими веществами. Этот путь окисления этанола происходит при участии одной из изоформ Р450 - изофермента Р450 II E1. При хроническом алкоголизме окисление этанола ускоряется на 50 - 70% за счёт гипертрофии ЭР и индукции цитохрома Р450 II E1.

С2Н5ОН + NADPH + Н+ + О2 → СН3СНО + NADP+ + 2Н2О.

Кроме основной реакции, цитохром Р450 катализирует образование активных форм кислорода (О2-, Н2О2), которые стимулируют ПОЛ в печени и других органах (см. раздел 8).

В. Окисление этанола каталазой

Второстепенную роль в окислении этанола играет каталаза, находящаяся в пероксисомах цитоплазмы и митохондрий клеток печени. Этот фермент расщепляет примерно 2% этанола, но при этом утилизирует пероксид водорода.

СН3СН2ОН + Н2О2 → СН3СНО + 2Н2О.

Г. Метаболизм и токсичность ацетальдегида

Ацетальдегид, образовавшийся из этанола, окисляется до уксусной кислоты двумя ферментами: FAD -зависимой альдегидоксидазой и NAD+ -зависимой ацетальдегиддегидрогеназой (АлДГ).

СН3СНО + О2 + H2O → СН3СООН + Н2О2 .

Повышение концентрации ацетальдегида в клетке вызывает индукцию фермента алъдегидоксидазы. В ходе реакции образуются уксусная кислота, пероксид водорода и другие активные формы кислорода, что приводит к активации ПОЛ.

Другой фермент ацетальдегиддегидрогеназа (АлДГ) окисляет субстрат при участии кофермента NAD+.

СН3СНО + Н2О + NAD+ → СН3СООН + NADH + H+.

Полученная в ходе реакции уксусная кислота активируется под действием фермента ацетил-КоА-синтетазы. Реакция протекает с использованием кофермента А и молекулы АТФ. Образовавшийся ацетил-КоА, в зависимости от соотношения АТФ/АДФ и концентрации окса-лоацетата в митохондриях гепатоцитов, может "сгорать" в ЦТК, идти на синтез жирных кислот или кетоновых тел.

В разных тканях организма человека встречаются полиморфные варианты АлДГ. Они характеризуются широкой субстратной специфичностью, разным распределением по клеткам тканей (почки, эпителий, слизистая оболочка желудка и кишечника) и в компартментах клетки. Например, изоформа АлДГ, локализованная в митохондриях гепатоцитов, обладает более высоким сродством к ацетальдегиду, чем цитозольная форма фермента.

Ферменты, участвующие в окислении этанола, - алкогольдегидрогеназа и АлДГ по разному распределены: в цитозоле - 80%/20% и митохондриях - 20%/80%. При поступлении больших доз алкоголя (более 2 г/кг) из-за разных скоростей окисления этанола и ацетальдегида в цитозоле резко повышается концентрация последнего. Ацетальдегид - очень реакционно-способное соединение; он неферментативно может ацетилировать SH-, NH2- группа белков и других соединений в клетке и нарушать их функции. В модифицированных (ацетилированных) белках могут возникать "сшивки", нехарактерные для нативной структуры (например, в белках межклеточного матрикса - эластине и коллагене, некоторых белках хроматина и липопротеинов, формирующихся в печени). Ацетилирование ядерных, цитоплазматических ферментов и структурных елков приводит к снижению синтеза экспортируемых печенью в кровь белков, например альбумина, который, удерживая Na+, поддерживает коллоидно-осмотическое давление, а также участвует в транспорте многих гидрофобных веществ в крови (см. раздел 14). Нарушение функций альбумина в сочетании с повреждающим действием ацетальдегида на мембраны сопровождается поступлением в клетки по градиенту концентрации ионов натрия и воды, происходит осмотическое набухание этих клеток и нарушение их функций.

Активное окисление этанола и ацетальдегида приводит к увеличению отношения NADH/NAD+, что снижает активность NAD+-зависимых ферментов в цитозоле и менее значительно в митохондриях.

36. Катаболические и анаболические пути обмена. Функции метаболизма. Три стадии катабо­лизма основных питательных веществ в организме. Связь общего пути катаболизма с цепью переноса электронов и протонов и синтезом АТФ. Роль  НАД- и ФАД-зависимых дегидрогеназ.  

 

Метаболизм (обмен веществ) – совокупность химических реакций, протекающих в живой клетке. Эти реакции протекают в определённой последовательности и тесно связаны между собой. Главные функции метаболизма в клетке:

а) запасание энергии, которая добывается путем расщепления пищевых веществ, поступающих в организм, или путем преобразования энергии солнечного света;

б) превращение молекул пищевых веществ в строительные блоки;

в) сборку белков, нуклеиновых кислот, липидов, полисахаридов и прочих клеточных компонентов из этих строительных блоков;

г) синтез и разрушение тех биомолекул, которые необходимы для выполнения специфических функций данной клетки.

13.1.2. Метаболизм включает множество метаболических путей. Метаболический путь - определенная последовательность ферментативных реакций в клетке. Промежуточные продукты реакций метаболического пути называются метаболитами. На каждой из стадий метаболического пути происходит небольшое химическое изменение метаболитов. В результате этих превращений исходная молекула превращается в конечный продукт метаболического пути.

13.1.3. Большинство метаболических путей являются линейными, но встречаются и циклические метаболические пути. Обычно метаболические пути имеют разветвления, в которых одни вещества выходят из цепи реакций данного пути, а другие, наоборот, включаются в него.

Обратите внимание, что главные метаболические пути немногочисленны и одинаковы у большинства живых организмов. Именно эти пути представляют для нас наибольший интерес. Рассмотрению их будут посвящены разделы 13.3. и 13.4 настоящей темы.

13.1.4. Две стороны (фазы) метаболизма. Метаболизм складывается из двух противоположных сторон : катаболизма и анаболизма.

Катаболизм – это фаза, в которой происходит последовательное расщепление сложных молекул до более простых, таких, как СО2, вода и аммиак. Процессы катаболизма сопровождаются выделением энергии. Эта энергия частично аккумулируется в форме макроэргического соединения – аденозинтрифосфата (АТФ).

Анаболизм – это фаза метаболизма, в которой происходит образование (биосинтез) сложных молекул (белков, липидов, полисахаридов) из простых предшественников. Процессы биосинтеза протекают с затратой энергии. Источником этой энергии служит распад АТФ до АДФ и неорганического фосфата.

Метаболические пути, выполняющие как катаболическую, так и анаболическую функцию, называют амфиболическими.

13.1.5. Катаболическая и анаболическая фазы метаболизма тесно связаны между собой (рисунок 13.2):

а) Энергия, выделяемая в реакциях катаболизма, и аккумулированная в форме молекул АТФ, потребляется в анаболических процессах.

б) В реакциях катаболизма образуются простые метаболиты, которые могут использоваться в реакциях биосинтеза (анаболизма).

  Рисунок 13.2. Взаимосвязь путей катаболизма и анаболизма

 

Как уже было сказано (раздел 13.1), катаболизм – совокупность химических реакций превращения высокомолекулярных соединений в низкомолекулярные. Это сложный ферментативный процесс, в котором принято выделять три основные стадии (рисунок 13.3). Для каждой стадии запомните, какие вещества вступают и образуются, локализацию в организме и энергетическую значимость.

 

Рисунок 13.3. Три стадии катаболизма питательных веществ (обозначены римскими цифрами).

13.2.2. На первой стадии крупные биомолекулы расщепляются на составляющие их строительные блоки: полисахариды превращаются в пентозы и гексозы, жиры – в жирные кислоты, глицерол и другие компоненты, белки – в аминокислоты. Это происходит в желудочно-кишечном тракте, а также в лизосомах клетки. Реакции катализируют ферменты, относящиеся к классу гидролаз. Относительная энергоотдача составляет менее 1% всей высвобождаемой энергии.

На второй стадии строительные блоки превращаются в более простые молекулы. Моносахариды, глицерол и большинство аминокислот расщепляются до одного и того же трёхуглеродного метаболита – пирувата. Это происходит в цитоплазме клеток. В дальнейшем пируват, а также жирные кислоты и некоторые аминокислоты окисляются до ацетильного остатка, связанного с коэнзимом А (ацетил-КоА). Эти реакции протекают уже в митохондриях клетки. Пируват и ацетил-КоА, находящиеся на пересечении нескольких метаболических путей, можно отнести кключевым или узловым метаболитам. Относительная энергоотдача второй стадии катаболизма около 20%; выделяемая энергия может быть частично аккумулирована в виде АТФ.

На третьей стадии происходит окисление ацетильной группы в цикле трикарбоновых кислот Кребса до СО2 и восстановленных форм коферментов НАД и ФАД. Эти коферменты окисляются в дыхательной цепи до Н2О; выделяемая энергия аккумулируется в АТФ. Все эти реакции протекают в митохондриях. Относительная энергоотдача третьей стадии - около 80%.

13.2.3. Различают общий и специфические пути катаболизма. К специфическим путям катаболизма веществ того или иного класса относят главным образом реакции первой и второй стадии катаболизма, которые для каждого класса могут существенно различаться. Третья стадия, одинаковая для всех классов питательных веществ, называется общим путём катаболизма.

 

37. Пировиноградная кислота: пути образования и использования в ор­ганизме.  Окислительное декарбоксилирование пировиноградной кислоты. Строение пируватдегидрогеназного комплекса. Значение витаминных ко­ферментов в декарбоксилировании пирувата.

 Заключительной реакцией второй стадии катаболизма питательных веществ является окислительное декарбоксилирование пирувата.

Пируват подвергается окислительному декарбоксилированию до ацетил-коэнзима А (ацетил-КоА) в митохондриях клеток при участии пируватдегидрогеназного комплекса. Пируватдегидрогеназный комплекс – мультифермент, в состав которого входит 3 фермента:

1) пируватдекарбоксилаза (коферментом служит производное витамина В1 - тиаминдифосфат, ТДФ, формулу его см. в теме «Коферменты»);

2) трансацилаза (кофермент – липоевая кислота, ЛК

3) дигидролипоилдегидрогеназа (в качестве кофермента используется производное витамина В2 – флавинадениндинуклеотид, ФАД, формулу его см. в теме «Коферменты»).

В реакции участвуют также два кофермента: коэнзим А (НSКоА, производное витамина В3) и никотинамидадениндинуклеотид (НАД, производное витамина РР), связанные при помощи нековалентных связей соответственно с трансацилазой и дигидролипоилдегидрогеназой.

Ацетил-КоА затем подвергается окислению в цикле Кребса, а НАДН служит донором водорода для дыхательной цепи. Процесс является аэробным, т.к. конечный акцептор водорода НАДН – кислород. Скорость реакции снижается при накоплении в клетке ацетил-КоА, НАДН и АТФ, увеличивается – при возрастании концентрации АДФ. Регуляторным ферментом комплекса является пируватдекарбоксилаза.

Аналогично происходит окислительное декарбоксилирование α-кетоглутарата – одного из метаболитов цикла Кребса. Реакцию катализирует α-кетоглутаратдегидрогеназный комплекс, сходный с пируватдегидрогеназным комплексом.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]