- •Уравнения и история
- •Следствия из уравнений Максвелла
- •Решения уравнений Максвелла
- •Компьютерные программы моделирования электромагнитных полей
- •Заключение
- •Определение Править
- •Световой конус и 4-скорость Править
- •Метрическое пространство
- •Содержание
- •Определения
- •Замечания
- •Обозначения
- •Связанные определения
- •Примеры
- •Конструкции
- •Свойства
- •Вариации и обобщения
- •Метрика пространства-времени
- •Содержание
- •Свойства
- •Собственное время
- •Пространственный интервал
- •5.2. Пограничное (сильное ядерное) и дистанционное (электромагнитное) взаимодействия винтовых вихревых колец (нуклонов)
Компьютерные программы моделирования электромагнитных полей
Если источник точечный (бесконечно малый), то понятно, что волны, расходящиеся от него, в свободном пространстве будут сферическими. То есть одинаковыми по всем трем пространственным координатам. В таких условиях решение трехмерного волнового уравнения получается довольно простым: поле убывает обратно пропорционально расстоянию.
Но точечных источников не бывает. Реально они все протяженные. Как быть? Это просто: представим протяженный источник как сумму большого числа точечных источников (а для каждого из них мы поле считать уже умеем). А потом просуммируем все поля от всех точечных источников. Точнее проинтегрируем (интеграл это ведь сумма) по всему объему.
Получим два интегральных уравнения: интегральное уравнение электрического поля: electric-field integral equation (EFIE) и интегральное уравнение магнитного поля magnetic Field Integral Equation (MFIE).
Исходными данными для этих уравнений является геометрия рассчитываемого источника поля (антенны, например) и распределение токов в пространстве.
Два свойства EFIE делают его незаменимым для расчета антенн:
EFIE позволяет решать задачи излучения и рассеяния в неограниченной области (граница которой находится в бесконечности). Иными словами: можно рассчитывать излучающую антенну (ее поле и уходит в бесконечность).
EFIE может быть решено численными методами, в частности, методом моментов.
Для расчета полей в ограниченной области (например резонатор, волновод, и т.п.) лучше подходит MFIE.
Компьютерные программы моделирования антенн (например, MMANA-GAL, GAL-ANA) работают, решая уравнение электрического поля EFIE для каждой конкретной антенны.
Заключение
Вот система уравнений Максвелла во всей красе:
∇·E = ρ/εo |
Закон Гаусса для E |
∇×E = – ∂B/∂t |
Закон Фарадея |
∇·B = 0 |
Закон Гаусса для В |
∇×B = j/εoc2 + (1/c2)·∂E/∂t |
Теорема о циркуляции В |
Она описывает абсолютно все электромагнитные явления. И вы ее теперь понимаете (во всяком случае, я на это надеюсь).
………………………………………………………………………………………………………………………………………………………………….
Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены другими преобразованиями. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x', y', z') и моментом времени t' этого же события, наблюдаемого в системе отсчета K'. Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:
|
Из преобразований Лоренца вытекает целый ряд следствий. В частности, из них следует релятивистский эффект замедления времени и лоренцево сокращение длины. Пусть, например, в некоторой точке x' системы K' происходит процесс длительностью τ0 = t'2 – t'1 (собственное время), где t'1 и t'2 – показания часов в K' в начале и конце процесса. Длительность τ этого процесса в системе K будет равна
|
Аналогичным образом, можно показать, что из преобразований Лоренца вытекает релятивистское сокращение длины. Одним из важнейших следствий из преобразований Лоренца является вывод оботносительности одновременности. Пусть, например, в двух разных точках системы отсчета K' (x'1 ≠ x'2) одновременно с точки зрения наблюдателя в K' (t'1 = t'2 = t') происходят два события. Согласно преобразованиям Лоренца, наблюдатель в системе K будет иметь
|
Следовательно, в системе K эти события, оставаясь пространственно разобщенными, оказываютсянеодновременными. Более того, знак разности t2 – t1 определяется знаком выражения υ(x'2 – x'1), поэтому в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Этот вывод СТО не относится к событиям, связанным причинно-следственными связями, когда одно из событий является физическим следствием другого. Можно показать, что в СТО не нарушается принцип причинности, и порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.
Относительность одновременности пространственно-разобщенных событий можно проиллюстрировать на следующем примере. Пусть в системе отсчета K' вдоль оси x' неподвижно расположен длинный жесткий стержень. В центре стержня находится импульсная лампа B, а на его концах установлены двое синхронизованных часов (рис. 7.4.1(a)), система K' движется вдоль оси x системы K со скоростью υ. В некоторый момент времени лампа посылает короткие световые импульсы в направлении концов стержня.
В силу равноправия обоих направлений свет в системе K' дойдет до концов стержня одновременно, и часы, закрепленные на концах стержня, покажут одно и то же время t'. Относительно системы K концы стержня движутся со скоростью υ так, что один конец движется навстречу световому импульсу, а другой конец свету приходится догонять. Так как скорости распространения световых импульсов в обоих направлениях одинаковы и равны c, то, с точки зрения наблюдателя в системе K, свет раньше дойдет до левого конца стержня, чем до правого (рис. 7.4.1(b)).
|
Рисунок 7.4.1. Относительность одновременности. Световой импульс достигает концов твердого стержня одновременно в системе отсчета K' (a) и не одновременно в системе отсчета K (b). |
Преобразования Лоренца выражают относительный характер промежутков времени и расстояний. Однако, в СТО наряду с утверждением относительного характера пространства и времени важную роль играет установление инвариантных физических величин, которые не изменяются при переходе от одной системе отсчета к другой. Одной из таких величин является скорость света c в вакууме, которая в СТО приобретает абсолютный характер. Другой важной инвариантной величиной, отражающей абсолютный характер пространственно-временных связей, является интервал между событиями. Пространственно-временной интервал определяется в СТО следующим соотношением:
|
где t12 – промежуток времени между событиями в некоторой системе отсчета, а l12 – расстояние между точками, в которых происходят рассматриваемые события, в той же системе отсчета. В частном случае, когда одно из событий происходит в начале координат (x1 = y1 = z1 = 0) системы отсчета в момент времени t1 = 0, а второе – в точке с координатами x, y, z в момент времени t, пространственно-временной интервал между этими событиями записывается в виде
|
С помощью преобразований Лоренца можно доказать, что пространственно-временной интервал между двумя событиями не изменяется при переходе из одной инерциальной системы в другую. Инвариантность интервала означает, что, несмотря на относительность расстояний и промежутков времени, протекание физических процессов носит объективный характер и не зависит от системы отсчета. Если одно из событий представляет собой вспышку света в начале координат системы отсчета при t = 0, а второе – приход светового фронта в точку с координатами x, y, z в момент времени t (рис. 7.1.3), то
x2 + y2 + z2 = c2t2, |
и, следовательно, интервал для этой пары событий s = 0. В другой системе отсчета координаты и время второго события будут другими, но и в этой системе пространственно-временной интервал s' окажется равным нулю, так как
|
Для
любых двух событий, связанных между
собой световым сигналом, интервал равен
нулю. Из преобразований Лоренца для
координат и времени можно
получить релятивистский
закон сложения скоростей.
Пусть, например, в системе отсчета K'
вдоль оси x' движется частица со
скоростью
Составляющие
скорости частицы u'x и u'z равны нулю.
Скорость этой частицы в системе K будет
равна
С
помощью операции дифференцирования из
формул преобразований Лоренца можно
найти:
|
Эти
соотношения выражают релятивистский
закон сложения скоростей для случая,
когда частица движется параллельно
относительной скорости
систем
отсчета K и K'. При υ << c релятивистские
формулы переходят в формулы классической
механики:
ux = u'x + υ, uy = 0, uz = 0. |
Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой импульс, то для скорости ux импульса в системе K получим
|
Таким образом, в системе отсчета K световой импульс также распространяется вдоль оси x со скоростью c, что согласуется с постулатом об инвариантности скорости света.
…………………………………………………………………………………………………………………………………………………………………
Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены другими преобразованиями. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x', y', z') и моментом времени t' этого же события, наблюдаемого в системе отсчета K'. Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:
|
Из преобразований Лоренца вытекает целый ряд следствий. В частности, из них следует релятивистский эффект замедления времени и лоренцево сокращение длины. Пусть, например, в некоторой точке x' системы K' происходит процесс длительностью τ0 = t'2 – t'1 (собственное время), где t'1 и t'2 – показания часов в K' в начале и конце процесса. Длительность τ этого процесса в системе K будет равна
|
Аналогичным образом, можно показать, что из преобразований Лоренца вытекает релятивистское сокращение длины. Одним из важнейших следствий из преобразований Лоренца является вывод оботносительности одновременности. Пусть, например, в двух разных точках системы отсчета K' (x'1 ≠ x'2) одновременно с точки зрения наблюдателя в K' (t'1 = t'2 = t') происходят два события. Согласно преобразованиям Лоренца, наблюдатель в системе K будет иметь
|
Следовательно, в системе K эти события, оставаясь пространственно разобщенными, оказываютсянеодновременными. Более того, знак разности t2 – t1 определяется знаком выражения υ(x'2 – x'1), поэтому в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Этот вывод СТО не относится к событиям, связанным причинно-следственными связями, когда одно из событий является физическим следствием другого. Можно показать, что в СТО не нарушается принцип причинности, и порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.
Относительность одновременности пространственно-разобщенных событий можно проиллюстрировать на следующем примере. Пусть в системе отсчета K' вдоль оси x' неподвижно расположен длинный жесткий стержень. В центре стержня находится импульсная лампа B, а на его концах установлены двое синхронизованных часов (рис. 7.4.1(a)), система K' движется вдоль оси x системы K со скоростью υ. В некоторый момент времени лампа посылает короткие световые импульсы в направлении концов стержня.
В силу равноправия обоих направлений свет в системе K' дойдет до концов стержня одновременно, и часы, закрепленные на концах стержня, покажут одно и то же время t'. Относительно системы K концы стержня движутся со скоростью υ так, что один конец движется навстречу световому импульсу, а другой конец свету приходится догонять. Так как скорости распространения световых импульсов в обоих направлениях одинаковы и равны c, то, с точки зрения наблюдателя в системе K, свет раньше дойдет до левого конца стержня, чем до правого (рис. 7.4.1(b)).
1 |
Рисунок 7.4.1. Относительность одновременности. Световой импульс достигает концов твердого стержня одновременно в системе отсчета K' (a) и не одновременно в системе отсчета K (b). |
Преобразования Лоренца выражают относительный характер промежутков времени и расстояний. Однако, в СТО наряду с утверждением относительного характера пространства и времени важную роль играет установление инвариантных физических величин, которые не изменяются при переходе от одной системе отсчета к другой. Одной из таких величин является скорость света c в вакууме, которая в СТО приобретает абсолютный характер. Другой важной инвариантной величиной, отражающей абсолютный характер пространственно-временных связей, является интервал между событиями. Пространственно-временной интервал определяется в СТО следующим соотношением:
|
где t12 – промежуток времени между событиями в некоторой системе отсчета, а l12 – расстояние между точками, в которых происходят рассматриваемые события, в той же системе отсчета. В частном случае, когда одно из событий происходит в начале координат (x1 = y1 = z1 = 0) системы отсчета в момент времени t1 = 0, а второе – в точке с координатами x, y, z в момент времени t, пространственно-временной интервал между этими событиями записывается в виде
|
С помощью преобразований Лоренца можно доказать, что пространственно-временной интервал между двумя событиями не изменяется при переходе из одной инерциальной системы в другую. Инвариантность интервала означает, что, несмотря на относительность расстояний и промежутков времени, протекание физических процессов носит объективный характер и не зависит от системы отсчета. Если одно из событий представляет собой вспышку света в начале координат системы отсчета при t = 0, а второе – приход светового фронта в точку с координатами x, y, z в момент времени t (рис. 7.1.3), то
x2 + y2 + z2 = c2t2, |
и, следовательно, интервал для этой пары событий s = 0. В другой системе отсчета координаты и время второго события будут другими, но и в этой системе пространственно-временной интервал s' окажется равным нулю, так как
|
Для любых двух событий, связанных между собой световым сигналом, интервал равен нулю. Из преобразований Лоренца для координат и времени можно получить релятивистский закон сложения скоростей. Пусть, например, в системе отсчета K' вдоль оси x' движется частица со скоростью Составляющие скорости частицы u'x и u'z равны нулю. Скорость этой частицы в системе K будет равна С помощью операции дифференцирования из формул преобразований Лоренца можно найти:
|
Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K'. При υ << c релятивистские формулы переходят в формулы классической механики:
ux = u'x + υ, uy = 0, uz = 0. |
Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой импульс, то для скорости ux импульса в системе K получим
|
Таким образом, в системе отсчета K световой импульс также распространяется вдоль оси x со скоростью c, что согласуется с постулатом об инвариантности скорости света.
………………………………………………………………………………………………………………………………………………………………….
Светово́й ко́нус, нулевой конус — гиперповерхность в пространстве Минковского, ограничивающая области будущего и прошлого относительно заданного события.

β = υ / c.
1