Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1Уравнения Джеймса Максвелла и др.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
882.14 Кб
Скачать

Решения уравнений Максвелла

Решать мы их не будем. Это сложно. Тем более что решения зависят от начальных и граничных условий (расположения в пространстве токов и зарядов, поверхностей). Поэтому решать уравнения Максвелла надо заново для каждой задачи (например, расчета конкретной антенны в заданном окружении). И занимаются этим, в основном моделирующие компьютерные программы.

Здесь мы рассмотрим только готовое решение для электромагнитной волны в свободном пространстве.

Из этого решения вытекает положение векторов электрического и магнитного поля относительно направления движения электромагнитной волны:

  • В перпендикулярно направлению распространения.

  • E также перпендикулярно направлению распространения.

  • В и Е перпендикулярны между собой.

В нашем трехмерном мире это возможно, только если BЕ и направление движения волны расположены по трем координатным осям. На следующей анимации показана электромагнитная волна в свободном пространстве:

Являющееся решением системы уравнений Максвелла трехмерное волновое уравнение по E для свободного пространства выглядит так:

 

2E/∂x2 + ∂2E/∂y2 + ∂2E/∂z2 - (1/c2)·∂2E/∂t2 = 0

 

Это очень интересное уравнение.

Во-первых, в нём явно видна равнозначность между пространственными координатами и временем: xyz и t стоят в одном ряду и в одном и том же виде (множитель c2 перед временем говорит лишь о том, что у координат и времени разная размерность и этот множитель лишь приводит ее к одной: скорость умножить на время получаются метры). И эта идентичность расположения x,yz и t говорит о том, что для электромагнитной волны наш мир четырехмерен, время является точно такой же полноправной координатой, как и xyz.

Во-вторых, в трехмерном волновом уравнении xyz и t стоят в квадрате. Что говорит от четырехмерной симметрии нашего мира (квадрат величины не зависит от ее знака: плюс или минус). Поэтому знаки координат xyz, и знак времени t можно менять на противоположные без изменения уравнения.

Решением этого трехмерного волнового уравнения является любая функция (волна), движущаяся в пространстве со скоростью c. Но из-за того, что в этом уравнении c встречается только в виде квадрата, изменение знака скорости c на противоположный ничего не меняет. Поэтому общим математическим решением волнового уравнения является сумма (наложение) двух волн со скоростью света одновременно бегущих в противоположные стороны.

И тут мы делаем следующий шаг: утверждаем (без математического доказательства, просто из опыта), что электромагнитные волны, создаваемые источником, всегда бегут только от него. Согласитесь, с точки зрения здравого смысла было бы очень странно, если бы еще до включения источника некая волна зародилась где-то очень далеко и успела бы прибыть к источнику именно в тот момент, когда мы надумали его включить. Решение уравнений Максвелла дает обеим волнам равные права. И мы сами на опыте устанавливаем добавочное (отсутствующее в уравнениях Максвелла) правило, что физический смысл имеет только одна из этих волн. Та, которая уходит от источника.

Из-за этого добавочного правила мы теряем симметрию по времени, которая есть в уравнениях Максвелла.

Кстати говоря, математиками внимательно исследовалась такая электродинамика, которая обходится без этого дополнительного правила и имеет две волны. Как ни странно, результаты таких исследований во многих случаях не являются физически абсурдными (а иногда они имеют явный физический смысл, например, прямая и обратная волна в длинных линиях). Но в физическую гипотезу такая электродинамика так и не превратилась, оставшись математическим экспериментом. Хотя возможность обратного движения по времени (т.е. его симметрии) так привлекательна, но… Так что мы пользуемся электродинамикой, в которой пространство симметрично, а время – нет (то есть волны всегда уходят от источника).