- •У.Клоксин, к.Меллиш программирование на языке пролог Для программистов и пользователей эвм. Предисловие редакторов перевода
- •Предисловие ко второму изданию
- •Предисловие к первому изданию
- •Глава 1 введение
- •1.1. Факты
- •1.2. Вопросы
- •1.3. Переменные
- •1.4. Конъюнкции
- •1.5. Правила
- •1.6. Заключение и упражнения
- •Глава 2 более детальное описание
- •2.1. Синтаксические правила
- •2.1.1. Константы
- •2.1.2. Переменные
- •2.1.3. Структуры
- •2.2. Литеры
- •2.3. Операторы
- •2.4. Равенство и установление соответствия
- •2.5. Арифметика
- •2.6. Общая схема согласования целевых утверждений
- •2.6.1. Успешное доказательство конъюнкции целевых утверждений
- •2.6.2. Рассмотрение целевых утверждений при использовании механизма возврата
- •2.6.3. Установление соответствия
- •Глава 3. Использование структур данных
- •3.1. Структуры и деревья
- •3.2. Списки
- •3.3. Принадлежность элементов списку
- •3.4. Пример: преобразование предложений
- •3.5. Пример: упорядочение по алфавиту
- •3.6. Использование предиката присоединить и спецификация деталей
- •Глава 4. Возврат и отсечение
- •4.1. Порождение множественных решений
- •4.2. Отсечение
- •4.3. Общие случаи использования отсечения
- •4.3.1. Подтверждение правильности выбора правила
- •4.3.2. Комбинация «отсечение-fail»
- •4.4. Проблемы, связанные с использованием отсечения
- •Глава 5 ввод и вывод
- •5.1. Ввод и вывод термов
- •5.1.1. Вывод термов
- •5.1.2. Ввод термов
- •5.2. Ввод и вывод литер
- •5.2.1. Вывод литер
- •5.2.2. Ввод литер
- •5.3. Ввод предложений
- •5.4. Чтение файлов и запись в файлы
- •5.4.1. Запись в файлы
- •5.4.2. Чтение файлов
- •5.4.3. Ввод программ
- •5.5. Объявление операторов
- •Глава 6. Встроенные предикаты
- •6.1. Ввод новых утверждений
- •Списковая форма записи
- •6.2. Выполнение и невыполнение целевого утверждения
- •6.3. Классификация термов
- •6.4. Работа с утверждениями как с термами
- •6.5. Создание структур и работа с компонентами структур
- •6.6. Воздействие на процесс возврата
- •Отсечение
- •6.7. Формирование составных целевых утверждений
- •Конъюнкция целей
- •Дизъюнкция целей
- •6.8. Равенство
- •6.9. Ввод и вывод данных
- •6.10. Обработка файлов
- •6.11. Вычисление арифметических выражений
- •6.12. Сравнение чисел
- •6.13. Наблюдение за выполнением программы на Прологе
- •Глава 7. Еще несколько примеров программ
- •7.1. Словарь в виде упорядоченного дерева
- •7.2. Поиск в лабиринте
- •7.3. Ханойские башни
- •7.4. Справочник комплектующих деталей
- •7.5. Обработка списков
- •7.6. Представление и обработка множеств
- •7.7. Сортировка
- •7.8. Использование базы данных: random, генатом, найтивсе
- •Генератор случайных чисел (random)
- •Генератор имен (генатом)
- •Генератор списков структур (найтивсе)
- •7.9. Поиск по графу
- •7.10. Просеивай Двойки, Просеивай Тройки
- •7.11. Символьное дифференцирование
- •7.12. Отображение структур и преобразование деревьев
- •7.13. Применение предикатов clause и retract
- •Глава 8. Отладка пролог-программ
- •8.1. Расположение текстов программ
- •8.2. Типичные ошибки
- •8.3. Модель трассировки
- •8.4. Трассировка и контрольные точки
- •Выдача информации о цели
- •Выдача информации о предшественниках
- •Изменение уровня трассировки
- •Вмешательство в процесс согласования цели
- •Другие команды
- •Заключение
- •8.5. Фиксация ошибок
- •Глава 9. Использование грамматических правил в прологе
- •9.1. Проблема синтаксического анализа
- •9.2. Описание синтаксического анализа на языке Пролог
- •9.3. Запись грамматических правил в Прологе
- •9.4. Присоединение дополнительных аргументов
- •9.5. Введение дополнительных условий
- •9.6. Заключение
- •Глава 10. Пролог и математическая логика
- •10.1. Краткое введение в исчисление предикатов
- •10.2. Приведение формул к стандартной форме
- •Этап 1 - исключение импликаций и зквивалентностей
- •Этап 2 - перенос отрицания внутрь формулы
- •Этап 3 - сколемизация
- •Этап 4 - вынесение кванторов общности в начало формулы
- •Этап 5 - использование дистрибутивных законов для & и #
- •Этап 6 - выделение множества дизъюнктов
- •10.3. Форма записи дизъюнктов
- •10.4. Принцип резолюций и доказательство теорем
- •10.5. Хорновские дизъюнкты
- •10.6. Пролог
- •10.7. Пролог и логическое программирование
- •Глава 11. Программные проекты на прологе
- •11.1. Простые проекты
- •11.2. Более сложные проекты
- •Приложение а. Ответы к некоторым упражнениям
- •Приложение в. Программа приведения формул исчисления предикатов к стандартной форме
- •Этап 1 - исключение импликаций
- •Этап 2 - перенос отрицания внутрь формулы
- •Этап 3 - сколемизация
- •Этап 4 - вынесение кванторов общности в начало формулы
- •Этап 5 - использование дистрибутивных законов для. & и #
- •Этап 6 - выделение множества дизъюнктов
- •Печать утверждений
- •Приложение с. Различные версии языка пролог
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Компиляция
- •Специальные встроенные предикаты
- •Средства отладки
- •Приложение d. Пролог для эвм dec system-10
- •Пример сеанса работы
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Компиляция
- •Различия во встроенных предикатах
- •Дополнительные встроенные предикаты
- •Средства отладки
- •Литература
- •Приложение е. Микро-пролог
- •Пример сеанса работы
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Специальные встроенные предикаты
- •Средства отладки
- •Литература
- •Приложение f. Система мпролог[19]
- •Пример сеанса работы
- •Синтаксис
- •Модульность
- •Компоненты системы мПролог
- •Различные ограничения
- •Дополнительные встроенные предикаты
- •Средства отладки
- •Литература
- •Примечания
10.2. Приведение формул к стандартной форме
Как было показано в предыдущем разделе, формулы исчисления предикатов, записанные с использованием связок -› (импликация) и ‹-› (эквивалентность), могут быть переписаны лишь с использованием связок& (конъюнкция), # (дизъюнкция) и ~ (отрицание). В действительности, существует множество разных форм записи формул, и мы ни в коей мере не принесли бы в жертву выразительность формул, если бы должны были полностью отказаться от использования, например, #, -›, ‹-› и exists(X, P). Как следствие этой избыточности, существуют много различных способов записи одного и того же высказывания. При необходимости выполнять формальные преобразования формул исчисления предикатов это оказывается очень неудобным. Было бы значительно лучше, если бы все, что мы хотим сказать, можно было выразить единственным способом. Поэтому здесь будет рассмотрен способ преобразования формул исчисления предикатов к специальному виду – стандартной форме, - обладающему тем свойством, что число различных способов записи одного и того же утверждения меньше по сравнению с использованием других форм. В действительности будет показано, что высказывание исчисления предикатов, представленное в стандартной форме, очень похоже на некоторое множество утверждений языка Пролог. Так что исследование стандартной формы имеет существенное значение для понимания связи между Прологом и математической логикой. В приложении В будет коротко описана программа на Прологе, автоматически транслирующая формулы исчисления предикатов в стандартную форму.
Процесс приведения формулы исчисления предикатов к стандартной форме состоит из шести основных этапов.
Этап 1 - исключение импликаций и зквивалентностей
Процедура начинается с замены всех вхождений -› и ‹-› в соответствии с их определениями, данными в разд. 10.1. Так, например, формула
аll(Х,мужчина(Х) -› человек(Х))
будет преобразована в формулу
аll(Х,~мужчина(Х) # человек(Х))
Этап 2 - перенос отрицания внутрь формулы
На этом этапе обрабатываются случаи применения отрицания к формулам, не являющимся атомарными. Если такой случай имеет место, то формула переписывается по соответствующим правилам. Так, например, формула
~(человек (цезарь)& существующий (цезарь))
преобразуется в
~человек(цезарь) # существующий (цезарь)
а
~аll(Х, человек (X))
преобразуется в
exists(Х,~человек(Х))
Преобразования, выполняемые на втором этапе, основаны на следующих фактах:
~(α&β) значит то же самое, что и (~α) # (~β)
~exists(ν,ρ) значит то же самое, что и all(ν,~ρ)
~all(ν,ρ) значит то же самое, что и exists(ν,~ρ)
После завершения второго этапа каждое вхождение отрицания в формулу будет относиться лишь к атомарным подформулам. Атомарная формула или ее отрицание называется литералом. На всех последующих этапах литералы обрабатываются как единый элемент, а то, какие литералы представлены отрицанием, будет существенным лишь в самом конце.
Этап 3 - сколемизация
На следующем этапе удаляются кванторы существования. Это делается путем введения новых констант – сколемовских констант - вместо переменных связанных (введенных) квантором существования. Вместо того чтобы говорить, что существует объект, обладающий некоторым множеством свойств, можно ввести имя для такого объекта и просто сказать, что он обладает данными свойствами. Это соображение лежит в основе введения сколемовских констант. Сколемизация более существенно изменяет логические свойства формулы, чем все обсуждавшиеся ранее преобразования. Тем не менее, она обладает следующим важным свойством. Если имеется формула, то интерпретация, в которой эта формула истинна, существует тогда и только тогда, когда существует интерпретация, в которой истинна формула, полученная из первой в результате сколемизации. Такая форма эквивалентности формул вполне достаточна для наших целей. Так, например, формула
exists(X,женщина(X)& мать(Х,ева))
в результате сколемизации преобразуется в формулу
женщина(g1)& мать(g1, ева)
где g1 – некоторая новая константа, не использовавшаяся ранее. Константа g1 представляет некоторую женщину, мать которой есть Ева. То, что для обозначения константы использован символ» отличный от использовавшихся ранее, существенно, так как в высказывании ничего не говорится о том, что какой-то конкретный человек является дочерью Евы. В утверждении говорится лишь о том, что такой человек существует. Может оказаться, что g1 будет соответствовать тот же самый человек, который соответствует другой константе, но это уже дополнительная информация, никак не выраженная в высказывании.
Если формула содержит кванторы общности, то процедура сколемизации уже не столь проста. Например, если в формуле [17]
аll(Х, человек(Х) -› exists(Y,мать(X,Y)))
(«каждый человек имеет мать») заменить каждое вхождение переменной V, связанной квантором существования, на константу g2 и удалить квантор существования, то получится:
all(X, человек(Х) -› мать(X,g2))
Последнее высказывание говорит о том, что все люди имеют одну и ту же мать, обозначенную в формуле константой g2. Если в формуле есть переменные, введенные посредством кванторов общности, то при сколемизации необходимо вводить не константы, а составные термы (функциональные символы с множеством переменных аргументов) для того, чтобы отразить, как объект, о существовании которого идет речь, зависит от того, что обозначают переменные. Таким образом, при сколемизации предыдущего примера должно получиться
all(X, человек(Х) -› мать(Х, g2(Х)))
В этом случае функциональный символ g2 соответствует функции, которая каждому конкретному человеку ставит в соответствие его мать.
