- •У.Клоксин, к.Меллиш программирование на языке пролог Для программистов и пользователей эвм. Предисловие редакторов перевода
- •Предисловие ко второму изданию
- •Предисловие к первому изданию
- •Глава 1 введение
- •1.1. Факты
- •1.2. Вопросы
- •1.3. Переменные
- •1.4. Конъюнкции
- •1.5. Правила
- •1.6. Заключение и упражнения
- •Глава 2 более детальное описание
- •2.1. Синтаксические правила
- •2.1.1. Константы
- •2.1.2. Переменные
- •2.1.3. Структуры
- •2.2. Литеры
- •2.3. Операторы
- •2.4. Равенство и установление соответствия
- •2.5. Арифметика
- •2.6. Общая схема согласования целевых утверждений
- •2.6.1. Успешное доказательство конъюнкции целевых утверждений
- •2.6.2. Рассмотрение целевых утверждений при использовании механизма возврата
- •2.6.3. Установление соответствия
- •Глава 3. Использование структур данных
- •3.1. Структуры и деревья
- •3.2. Списки
- •3.3. Принадлежность элементов списку
- •3.4. Пример: преобразование предложений
- •3.5. Пример: упорядочение по алфавиту
- •3.6. Использование предиката присоединить и спецификация деталей
- •Глава 4. Возврат и отсечение
- •4.1. Порождение множественных решений
- •4.2. Отсечение
- •4.3. Общие случаи использования отсечения
- •4.3.1. Подтверждение правильности выбора правила
- •4.3.2. Комбинация «отсечение-fail»
- •4.4. Проблемы, связанные с использованием отсечения
- •Глава 5 ввод и вывод
- •5.1. Ввод и вывод термов
- •5.1.1. Вывод термов
- •5.1.2. Ввод термов
- •5.2. Ввод и вывод литер
- •5.2.1. Вывод литер
- •5.2.2. Ввод литер
- •5.3. Ввод предложений
- •5.4. Чтение файлов и запись в файлы
- •5.4.1. Запись в файлы
- •5.4.2. Чтение файлов
- •5.4.3. Ввод программ
- •5.5. Объявление операторов
- •Глава 6. Встроенные предикаты
- •6.1. Ввод новых утверждений
- •Списковая форма записи
- •6.2. Выполнение и невыполнение целевого утверждения
- •6.3. Классификация термов
- •6.4. Работа с утверждениями как с термами
- •6.5. Создание структур и работа с компонентами структур
- •6.6. Воздействие на процесс возврата
- •Отсечение
- •6.7. Формирование составных целевых утверждений
- •Конъюнкция целей
- •Дизъюнкция целей
- •6.8. Равенство
- •6.9. Ввод и вывод данных
- •6.10. Обработка файлов
- •6.11. Вычисление арифметических выражений
- •6.12. Сравнение чисел
- •6.13. Наблюдение за выполнением программы на Прологе
- •Глава 7. Еще несколько примеров программ
- •7.1. Словарь в виде упорядоченного дерева
- •7.2. Поиск в лабиринте
- •7.3. Ханойские башни
- •7.4. Справочник комплектующих деталей
- •7.5. Обработка списков
- •7.6. Представление и обработка множеств
- •7.7. Сортировка
- •7.8. Использование базы данных: random, генатом, найтивсе
- •Генератор случайных чисел (random)
- •Генератор имен (генатом)
- •Генератор списков структур (найтивсе)
- •7.9. Поиск по графу
- •7.10. Просеивай Двойки, Просеивай Тройки
- •7.11. Символьное дифференцирование
- •7.12. Отображение структур и преобразование деревьев
- •7.13. Применение предикатов clause и retract
- •Глава 8. Отладка пролог-программ
- •8.1. Расположение текстов программ
- •8.2. Типичные ошибки
- •8.3. Модель трассировки
- •8.4. Трассировка и контрольные точки
- •Выдача информации о цели
- •Выдача информации о предшественниках
- •Изменение уровня трассировки
- •Вмешательство в процесс согласования цели
- •Другие команды
- •Заключение
- •8.5. Фиксация ошибок
- •Глава 9. Использование грамматических правил в прологе
- •9.1. Проблема синтаксического анализа
- •9.2. Описание синтаксического анализа на языке Пролог
- •9.3. Запись грамматических правил в Прологе
- •9.4. Присоединение дополнительных аргументов
- •9.5. Введение дополнительных условий
- •9.6. Заключение
- •Глава 10. Пролог и математическая логика
- •10.1. Краткое введение в исчисление предикатов
- •10.2. Приведение формул к стандартной форме
- •Этап 1 - исключение импликаций и зквивалентностей
- •Этап 2 - перенос отрицания внутрь формулы
- •Этап 3 - сколемизация
- •Этап 4 - вынесение кванторов общности в начало формулы
- •Этап 5 - использование дистрибутивных законов для & и #
- •Этап 6 - выделение множества дизъюнктов
- •10.3. Форма записи дизъюнктов
- •10.4. Принцип резолюций и доказательство теорем
- •10.5. Хорновские дизъюнкты
- •10.6. Пролог
- •10.7. Пролог и логическое программирование
- •Глава 11. Программные проекты на прологе
- •11.1. Простые проекты
- •11.2. Более сложные проекты
- •Приложение а. Ответы к некоторым упражнениям
- •Приложение в. Программа приведения формул исчисления предикатов к стандартной форме
- •Этап 1 - исключение импликаций
- •Этап 2 - перенос отрицания внутрь формулы
- •Этап 3 - сколемизация
- •Этап 4 - вынесение кванторов общности в начало формулы
- •Этап 5 - использование дистрибутивных законов для. & и #
- •Этап 6 - выделение множества дизъюнктов
- •Печать утверждений
- •Приложение с. Различные версии языка пролог
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Компиляция
- •Специальные встроенные предикаты
- •Средства отладки
- •Приложение d. Пролог для эвм dec system-10
- •Пример сеанса работы
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Компиляция
- •Различия во встроенных предикатах
- •Дополнительные встроенные предикаты
- •Средства отладки
- •Литература
- •Приложение е. Микро-пролог
- •Пример сеанса работы
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Специальные встроенные предикаты
- •Средства отладки
- •Литература
- •Приложение f. Система мпролог[19]
- •Пример сеанса работы
- •Синтаксис
- •Модульность
- •Компоненты системы мПролог
- •Различные ограничения
- •Дополнительные встроенные предикаты
- •Средства отладки
- •Литература
- •Примечания
7.10. Просеивай Двойки, Просеивай Тройки
Просеивай Двойки,
Просеивай Тройки,
Эратосфена Решето,
Пусть все кратные им отсеем,
Простые числа получим зато.
Аноним
Простое число – это целое положительное число, которое делится нацело только на 1 и на само себя. Например, число 5 – простое, а число 15 – нет, поскольку оно делится на 3. Один из методов построения простых чисел называется «решетом Эратосфена». Этот метод, «отсеивающий» простые числа, не превышающие N, работает следующим образом:
1. Поместить все числа от 2 до N в решето.
2. Выбрать и удалить из решета наименьшее число.
3. Включить это число в список простых.
4. Просеять через решето (удалить) все числа, кратные этому числу.
5. Если решето не пусто, то повторить шаги 2-5.
Чтобы перевести эти правила на Пролог, мы определим предикат целые для получения списка целых чисел, предикат отсеять для проверки каждого элемента решета и предикат удалить для создания нового содержимого решета путем удаления из старого всех чисел, кратных выбранному числу. Это новое содержимое опять передается предикату отсеять. Предикат простые - это предикат самого верхнего уровня, такой что простые(N, L) конкретизирует L списком простых чисел, заключенных в диапазоне от 1 до N включительно.
простые(Предел,Рs):- целые(2,Предел,Is),отсеять(Is,Рs).
целые (Min,Max,[Min|Oct]):-Min=‹Max,!, М is Min+1,целые(М,Мах,Ост).
целые(_,_,[]).
отсеять([],[]).
отсеять([I|Is],[I|Ps]):-удалить(I,Is,Нов),отсеять(Нов,Рs).
удалить(Р,[],[]).
удалить (P,[I|Is],[I|Nis]):-not(0 is I mod Р),!,удалить(Р,Is,Nis).
удалить (P,[I|Is],Nis):-0 is I mod Р,!,удалить(Р,Is,Nis).
Продолжая эту арифметическую тему, рассмотрим Пролог-программу, реализующую рекурсивную формулировку алгоритма Евклида для нахождения наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК) двух чисел. Целевое утверждение нод(I,J,K) доказуемо, если K является наибольшим общим делителем чисел I и J. Целевое утверждение нок(I,J,K) доказуемо, если K является наименьшим общим кратным чисел I и J:
нод(I,0,I).
нод(I,J,K):- R is I mod J, нод(J,R,K).
нок(I,J,K):- нод(I,J,R), K is (I*J)/R.
Заметим, что из-за особенностей способа вычисления остатка эти предикаты не являются «обратимыми». Это означает, что для того чтобы они работали, необходимо заблаговременно конкретизировать переменные I и J.
Упражнение 7.10. Если числа X, Y и Z таковы, что квадрат Z равен сумме квадратов X и Y (т. е. если Z²=X²+Y²), то про такие числа говорят, что они образуют Пифагорову тройку. Напишите программу, порождающую Пифагоровы тройки. Определите предикат pythag такой что, задав вопрос
?- pythag(X,Y,Z).
и запрашивая альтернативные решения, мы получим столько разных Пифагоровых троек, сколько пожелаем. Подсказка: используйте предикаты, подобные целое_число из гл. 4.
7.11. Символьное дифференцирование
Символьным дифференцированием в математике называется операция преобразования одного арифметического выражения в другое арифметическое выражение, которое называется производной. Пусть U обозначает арифметическое выражение, которое может содержать переменную х. Производная от U по х записывается в виде dU/dx и определяется рекурсивно с помощью некоторых правил преобразования, применяемых к U. Вначале следуют два граничных условия. Стрелка означает «преобразуется в»; U и V обозначают выражения, а с – константу:
dc/dx → 0
dx/dx → 1
d(-U)/dx → -(dU/dx)
d(U+V)/dx → dU/dx+dV/dx
d(U-V)/dx → dU/dx-dV/dx
d(cU)/dx → c(dU/dx)
d(UV)/dx → U(dV/dx) + V(dU/dx)
d(U/V)dx → d(UV-1)/dx
d(Uc)/dx → cUc-l(dU/dx)
d(lnU)/dx → U-1(dU/dx)
Этот набор правил легко написать на Прологе, поскольку мы можем представить арифметические выражения как структуры и использовать знаки операций как функторы этих структур. Кроме того, сопоставление целевого утверждения с заголовком правила мы можем использовать как сопоставление образцов. Рассмотрим цель d(E,X, F), которая считается согласованной, когда производная выражения E по константе[12] X есть выражение F. Помимо знаков операций +, -, *, /, которые имеют встроенные определения, нам нужно определить операцию ^, такую, что X^Y означаете xy, а также одноместную операцию ~, такую что ~Х означает «минус X». Эти определения операций введены исключительно для того, чтобы облегчить распознавание синтаксиса выражений. Например, после того как d определен, можно было бы задать следующие вопросы:
?- d(x+1,x,X).
X = 1+0
?- d(x*x-2,x,X).
X = х*1+1*х-0
Заметим, что само по себе простое преобразование одного выражения в другое (на основе правил) не всегда дает результат в приведенной (упрощенной) форме. Приведение результата должно быть записано в виде отдельной процедуры (см. разд. 7.12). Программа дифференцирования состоит из определений дополнительных операций и построчной трансляции приведенных выше правил преобразования в утверждения Пролога:
?- op(10,yfx,^).
?- op(9,fx,~).
d(X,X,1):-!.
d(C,X,0):- atomic(C).
d(~U,X,~A):- d(U,X,A).
d(U+V,X,A+B):- d(U,X,A), d(V,X,B).
d(U-V,X,A-В):- d(U,X,A), d(V,X,B).
d(C*U,X,C*A):- atomic(C), C\=X, d(U,X,A),!.
d(U*V,X,B*U+A*V):- d(U,X,A), d(V,X,B).
d(U/V,X,A):- d(U*V^~1),X,A).
d(U^C,X,C*U^(C-1)*W):- atomic(C),C\=X,d(U,X,W).
d(log(U),X,A*U^(~1)):- d(U,X,A).
Обратите внимание на два места, в которых задан предикат отсечения. В первом случае отсечение обеспечивает тот факт, что производная от переменной по ней самой распознается только первым утверждением, исключая возможность применения второго утверждения. Во втором случае предусмотрено два утверждения для умножения. Первое – для специального случая. Если имеет место специальный случай, то утверждение для общего случая должно быть устранено из рассмотрения.
Как уже говорилось, данная программа выдает решения в неприведенной форме (т. е. без упрощений). Например, всякое вхождение х*1 может быть приведено к х, а всякое вхождение вида х*1+1*х-0 может быть приведено к 2*х. В следующем разделе рассматривается программа алгебраических преобразований, которую можно использовать для упрощения арифметических выражений. Примененный способ очень похож на тот, каким выше выводились производные.
