- •У.Клоксин, к.Меллиш программирование на языке пролог Для программистов и пользователей эвм. Предисловие редакторов перевода
- •Предисловие ко второму изданию
- •Предисловие к первому изданию
- •Глава 1 введение
- •1.1. Факты
- •1.2. Вопросы
- •1.3. Переменные
- •1.4. Конъюнкции
- •1.5. Правила
- •1.6. Заключение и упражнения
- •Глава 2 более детальное описание
- •2.1. Синтаксические правила
- •2.1.1. Константы
- •2.1.2. Переменные
- •2.1.3. Структуры
- •2.2. Литеры
- •2.3. Операторы
- •2.4. Равенство и установление соответствия
- •2.5. Арифметика
- •2.6. Общая схема согласования целевых утверждений
- •2.6.1. Успешное доказательство конъюнкции целевых утверждений
- •2.6.2. Рассмотрение целевых утверждений при использовании механизма возврата
- •2.6.3. Установление соответствия
- •Глава 3. Использование структур данных
- •3.1. Структуры и деревья
- •3.2. Списки
- •3.3. Принадлежность элементов списку
- •3.4. Пример: преобразование предложений
- •3.5. Пример: упорядочение по алфавиту
- •3.6. Использование предиката присоединить и спецификация деталей
- •Глава 4. Возврат и отсечение
- •4.1. Порождение множественных решений
- •4.2. Отсечение
- •4.3. Общие случаи использования отсечения
- •4.3.1. Подтверждение правильности выбора правила
- •4.3.2. Комбинация «отсечение-fail»
- •4.4. Проблемы, связанные с использованием отсечения
- •Глава 5 ввод и вывод
- •5.1. Ввод и вывод термов
- •5.1.1. Вывод термов
- •5.1.2. Ввод термов
- •5.2. Ввод и вывод литер
- •5.2.1. Вывод литер
- •5.2.2. Ввод литер
- •5.3. Ввод предложений
- •5.4. Чтение файлов и запись в файлы
- •5.4.1. Запись в файлы
- •5.4.2. Чтение файлов
- •5.4.3. Ввод программ
- •5.5. Объявление операторов
- •Глава 6. Встроенные предикаты
- •6.1. Ввод новых утверждений
- •Списковая форма записи
- •6.2. Выполнение и невыполнение целевого утверждения
- •6.3. Классификация термов
- •6.4. Работа с утверждениями как с термами
- •6.5. Создание структур и работа с компонентами структур
- •6.6. Воздействие на процесс возврата
- •Отсечение
- •6.7. Формирование составных целевых утверждений
- •Конъюнкция целей
- •Дизъюнкция целей
- •6.8. Равенство
- •6.9. Ввод и вывод данных
- •6.10. Обработка файлов
- •6.11. Вычисление арифметических выражений
- •6.12. Сравнение чисел
- •6.13. Наблюдение за выполнением программы на Прологе
- •Глава 7. Еще несколько примеров программ
- •7.1. Словарь в виде упорядоченного дерева
- •7.2. Поиск в лабиринте
- •7.3. Ханойские башни
- •7.4. Справочник комплектующих деталей
- •7.5. Обработка списков
- •7.6. Представление и обработка множеств
- •7.7. Сортировка
- •7.8. Использование базы данных: random, генатом, найтивсе
- •Генератор случайных чисел (random)
- •Генератор имен (генатом)
- •Генератор списков структур (найтивсе)
- •7.9. Поиск по графу
- •7.10. Просеивай Двойки, Просеивай Тройки
- •7.11. Символьное дифференцирование
- •7.12. Отображение структур и преобразование деревьев
- •7.13. Применение предикатов clause и retract
- •Глава 8. Отладка пролог-программ
- •8.1. Расположение текстов программ
- •8.2. Типичные ошибки
- •8.3. Модель трассировки
- •8.4. Трассировка и контрольные точки
- •Выдача информации о цели
- •Выдача информации о предшественниках
- •Изменение уровня трассировки
- •Вмешательство в процесс согласования цели
- •Другие команды
- •Заключение
- •8.5. Фиксация ошибок
- •Глава 9. Использование грамматических правил в прологе
- •9.1. Проблема синтаксического анализа
- •9.2. Описание синтаксического анализа на языке Пролог
- •9.3. Запись грамматических правил в Прологе
- •9.4. Присоединение дополнительных аргументов
- •9.5. Введение дополнительных условий
- •9.6. Заключение
- •Глава 10. Пролог и математическая логика
- •10.1. Краткое введение в исчисление предикатов
- •10.2. Приведение формул к стандартной форме
- •Этап 1 - исключение импликаций и зквивалентностей
- •Этап 2 - перенос отрицания внутрь формулы
- •Этап 3 - сколемизация
- •Этап 4 - вынесение кванторов общности в начало формулы
- •Этап 5 - использование дистрибутивных законов для & и #
- •Этап 6 - выделение множества дизъюнктов
- •10.3. Форма записи дизъюнктов
- •10.4. Принцип резолюций и доказательство теорем
- •10.5. Хорновские дизъюнкты
- •10.6. Пролог
- •10.7. Пролог и логическое программирование
- •Глава 11. Программные проекты на прологе
- •11.1. Простые проекты
- •11.2. Более сложные проекты
- •Приложение а. Ответы к некоторым упражнениям
- •Приложение в. Программа приведения формул исчисления предикатов к стандартной форме
- •Этап 1 - исключение импликаций
- •Этап 2 - перенос отрицания внутрь формулы
- •Этап 3 - сколемизация
- •Этап 4 - вынесение кванторов общности в начало формулы
- •Этап 5 - использование дистрибутивных законов для. & и #
- •Этап 6 - выделение множества дизъюнктов
- •Печать утверждений
- •Приложение с. Различные версии языка пролог
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Компиляция
- •Специальные встроенные предикаты
- •Средства отладки
- •Приложение d. Пролог для эвм dec system-10
- •Пример сеанса работы
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Компиляция
- •Различия во встроенных предикатах
- •Дополнительные встроенные предикаты
- •Средства отладки
- •Литература
- •Приложение е. Микро-пролог
- •Пример сеанса работы
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Специальные встроенные предикаты
- •Средства отладки
- •Литература
- •Приложение f. Система мпролог[19]
- •Пример сеанса работы
- •Синтаксис
- •Модульность
- •Компоненты системы мПролог
- •Различные ограничения
- •Дополнительные встроенные предикаты
- •Средства отладки
- •Литература
- •Примечания
6.5. Создание структур и работа с компонентами структур
Обычно когда мы хотим задать в программе на Прологе операции со структурой определенного вида, то мы делаем это, «упоминая» некоторым образом подобную структуру. Это значит, что если предикат используется для обработки множества структур различного вида, передаваемых ему в качестве аргумента, то обычно мы обеспечиваем отдельное утверждение для каждого класса структур. Хорошим примером такого подхода является программа для символьного дифференцирования, которая будет рассмотрена в разд. 7.1. В этой программе используются отдельные утверждения для функторов +, -, * и так далее. Мы знаем заранее, какие структуры могут появиться, и обеспечиваем утверждения для каждой из них.
В некоторых программах мы не можем предвидеть заранее все возможные структуры. Это имеет место, например, при написании программы «красивой печати», которая могла бы печатать произвольные структуры языка Пролог, размещая их в нескольких строках и используя отступы. (См. разд. 5.1, где представлена такая программа для печати списков.) Так, например, возможно, мы захотели бы напечатать терм
книга(629,автор(бронте, эмили),вх)
следующим образом:
книга
629
автор
бронте
эмили
вх
Важным моментом является то, что мы хотим, чтобы эта программа работала правильно, какую бы структуру мы ей ни задали. Понятно, что одна из возможностей сделать это – обеспечить отдельное утверждение для каждого функтора, какой только можно представить. Но это работа, которую мы никогда не завершим, потому что существует бесконечно много различных функторов! Написать подобную программу можно, используя встроенные предикаты для работы со структурами произвольного вида. Здесь мы опишем некоторые из них – это предикаты functor, arg и '=..'. Мы опишем также предикат name, выполняющий операции над атомами.
functor(T,F,N)
Предикат functor определен таким образом, что functor(T,F,N) означает, что Т – это структура с функтором F, имеющим N аргументов. Этот предикат можно использовать двумя основными способами, В первом случае аргумент Т уже имеет значение. Целевое утверждение считается несогласованным с базой данных, если Т не является ни атомом, ни структурой. Если Т – это атом или структура, то F сопоставляется с функтором этой структуры, а N присваивается значение, равное числу аргументов функтора. Заметим, что в данном контексте считается, что атом – это структура с числом аргументов 0. Ниже приведено несколько примеров целевых утверждений с предикатом functor:
?- functor(f(a,b,g(Z)),F,N).
Z = _23, F = f, N = 3
?- functor(a+b,F,N).
F = +, N = 2
?- functor([a,b,c],F,N).
F =., N = 2
?- functor(apple,F,N).
F = apple, N = 0
?- functor([a,b,c],'.',3).
нет
?- functor([a,b,c],a,Z).
нет
Прежде чем перейти к обсуждению предиката arg, следует рассмотреть второй способ использования предиката functor. В этом случае первый аргумент целевого утверждения functor (Т, F, N) неконкретизирован. В этом случае два других аргумента должны быть конкретизированы, однозначно определяя функтор и число аргументов соответственно. Целевое утверждение такого вида всегда согласуется с базой данных, и в результате значением Т становится структура с указанными функтором и числом аргументов. Таким образом, это некоторый способ создания произвольных структур по заданным функтору структуры и числу ее аргументов. Аргументами такой структуры, созданной с помощью предикатаfunctor, являются неконкретизированные переменные. Следовательно, эта структура будет сопоставима с любой другой структурой, имеющей тот же функтор и одинаковое число аргументов.
Предикат functor используется для создания структуры в основном тогда, когда нам надо получить «копию» некоторой уже существующей структуры с новыми переменными в качестве аргументов. Мы можем ввести для этого предикаткопирование, использующий functor как целевое утверждение:
копирование(Старая, Новая):- functor(Cтapaя,F,N), functor(Hoвaя,F,N).
В этом определении подряд используются два целевых утверждения functor. Если целевое утверждение копирование имеет конкретизированный первый аргумент и неконкретизированный второй, то произойдет следующее. Первое целевое утверждение functor будет соответствовать первому способу использования этого предиката (так как первый аргумент этого предиката конкретизирован). Следовательно, F и N конкретизируются, получив в качестве значений функтор и число аргументов этой существующей структуры. Второе целевое утверждение functor соответствует второму способу использования этого предиката. На этот раз первый аргумент неконкретизирован, и информация, задаваемая F иN, используется для создания структуры Новая. Эта структура имеет те же функтор и число аргументов, что и Старая, но ее компонентами являются переменные. Таким образом, возможен следующий диалог:
?- копирование(sentence(np(n(john)), v(eats)),X).
X = sentence(_23,_24)
Мы используем подобную комбинацию целевых утверждений functor в определении предиката reconsult в разд. 7.13.
arg(N,T,A)
Предикат arg всегда должен использоваться с конкретизированными первым и вторым аргументами. Он применяется для доступа к конкретному аргументу структуры. Первый аргумент предиката arg определяет, какой аргумент структуры необходим. Второй аргумент определяет структуру, к аргументу которой необходим доступ. Пролог находит соответствующий аргумент и затем пытается сопоставить его с третьим аргументом предиката arg. Таким образом, цель arg(N,T,A)согласуется с базой данных, если N-й аргумент Т есть А. Давайте рассмотрим несколько целевых утверждений с arg.
?- аrg(2,отношение(джон,мать(джейн)),Х).
X = мать(джейн)
?- arg(1,a+(b+c),X).
X =а
?- arg(2,[a,b,c],X).
X = [b,c]
?-arg(l,a+(b+c),b).
нет
Иногда мы захотим использовать предикаты functor и arg в ситуации, когда возможные структуры уже известны. Это связано с тем, что структура может иметь так много аргументов, что просто неудобно каждый раз перечислять их все. Рассмотрим пример, в котором структуры используются для описания книг. Мы могли бы иметь отдельную компоненту для названия книги, ее автора, издательства, года издания и так далее. Будем считать, что результирующая структура имеет четырнадцать компонент. Мы могли бы написать следующие полезные определения:
является _ книгой(книга(_,_,_,_,_,_,_,_,_,_,_,_,_,_)).
название(книга(Т,_,_,_,_,_,_,_,_,_,_,_,_,_),Т).
автор(книга(_,А,_,_,_,_,_,_,_,_,_,_,_,_),А).
. . .
В действительности мы можем записать это значительно более компактно следующим образом:
является_книгой(Х):- functor(X, книга, 14).
название(Х,Т):- является_книгой(Х), arg(1,X,T).
автор(Х,А):- является_книгой(Х), arg(2,X,T).
. . .
X=..L
Предикаты functor и arg дают один из способов создания произвольных структур и доступа к их аргументам. Предикат «=..» предоставляет альтернативный способ, полезный в том случае, когда необходимо одновременно получить все аргументы структуры или создать структуру по заданному списку ее аргументов. Целевое утверждение X=..L означает, что L есть список, состоящий из функтора структуры X, за которым следуют аргументы X. Такое целевое утверждение может быть использовано двумя способами, так же как и целевое утверждение functor. Если X уже имеет значение, то Пролог создает соответствующий список и пытается сопоставить его с L. Напротив, если X неконкретизировано, то список будет использован для формирования соответствующей структуры, которая станет значением X. В этом случае голова списка должна быть атомом (этот атом станет функтором X). Ниже приведено несколько примеров целевых утверждений, содержащих =..:
?- имя(а,b,с) =.. X.
X = [имя,а,b,с]
?- присоединить([А|В],С, [A|D]) =..L.
A = _2, В = _3, С = _4, D = _5, L = [присоединить,[_2|_3],_4,[_2|_5]]
?- [a,b,c,d] =..L.
L = ['.',a,[b,c,d]].
?- (a+b) =.. L.
L = [+,a,b].
?- (a+b) =..
[+,A,B] A = а, В = b
?- [a,b,c,d] =..
[A|B] A = '.', В = [a,[b,c,d]]
?- X =.. [a,b,c,d]
X = a(b,c,d).
?- X =.. [присоединить,[a,b,],[c],[a,b,c]].
X = присоединить([а,b],[с],[а,b,с])
Примеры использования предиката =.. приведены в разд. 7.12.
name(А,L)
В то время как предикаты functor, arg и =.. используются для формирования произвольных структур и доступа к их аргументам, предикат name используется для работы с произвольными атомами. Предикат name сопоставляет атому список литер (их ASCII кодов), из которых состоит этот атом. Данный предикат можно использовать как для определения литер, составляющих указанный атом, так и для определения атома, содержащего заданные литеры. Целевое утверждениеname(A, L) означает, что литеры, образующие атом А, являются элементами списка L. Если аргументу А уже присвоено значение, то Пролог создает список литер и пытается сопоставить его с L. В противном случае Пролог использует список Lдля создания атома, который станет значением А. Приведем примеры использования предиката name:
?- name(apple,X).
X = [97,112,112,108,100]
?- name(X,[97,l12,112,108,100]).
X = apple
?- name(apple,"apple").
да
?- name(apple,"pear").
нет
В разд. 9.5 предикат name используется для доступа к внутренней структуре слов английского языка, представляемых атомами Пролога.
