- •У.Клоксин, к.Меллиш программирование на языке пролог Для программистов и пользователей эвм. Предисловие редакторов перевода
- •Предисловие ко второму изданию
- •Предисловие к первому изданию
- •Глава 1 введение
- •1.1. Факты
- •1.2. Вопросы
- •1.3. Переменные
- •1.4. Конъюнкции
- •1.5. Правила
- •1.6. Заключение и упражнения
- •Глава 2 более детальное описание
- •2.1. Синтаксические правила
- •2.1.1. Константы
- •2.1.2. Переменные
- •2.1.3. Структуры
- •2.2. Литеры
- •2.3. Операторы
- •2.4. Равенство и установление соответствия
- •2.5. Арифметика
- •2.6. Общая схема согласования целевых утверждений
- •2.6.1. Успешное доказательство конъюнкции целевых утверждений
- •2.6.2. Рассмотрение целевых утверждений при использовании механизма возврата
- •2.6.3. Установление соответствия
- •Глава 3. Использование структур данных
- •3.1. Структуры и деревья
- •3.2. Списки
- •3.3. Принадлежность элементов списку
- •3.4. Пример: преобразование предложений
- •3.5. Пример: упорядочение по алфавиту
- •3.6. Использование предиката присоединить и спецификация деталей
- •Глава 4. Возврат и отсечение
- •4.1. Порождение множественных решений
- •4.2. Отсечение
- •4.3. Общие случаи использования отсечения
- •4.3.1. Подтверждение правильности выбора правила
- •4.3.2. Комбинация «отсечение-fail»
- •4.4. Проблемы, связанные с использованием отсечения
- •Глава 5 ввод и вывод
- •5.1. Ввод и вывод термов
- •5.1.1. Вывод термов
- •5.1.2. Ввод термов
- •5.2. Ввод и вывод литер
- •5.2.1. Вывод литер
- •5.2.2. Ввод литер
- •5.3. Ввод предложений
- •5.4. Чтение файлов и запись в файлы
- •5.4.1. Запись в файлы
- •5.4.2. Чтение файлов
- •5.4.3. Ввод программ
- •5.5. Объявление операторов
- •Глава 6. Встроенные предикаты
- •6.1. Ввод новых утверждений
- •Списковая форма записи
- •6.2. Выполнение и невыполнение целевого утверждения
- •6.3. Классификация термов
- •6.4. Работа с утверждениями как с термами
- •6.5. Создание структур и работа с компонентами структур
- •6.6. Воздействие на процесс возврата
- •Отсечение
- •6.7. Формирование составных целевых утверждений
- •Конъюнкция целей
- •Дизъюнкция целей
- •6.8. Равенство
- •6.9. Ввод и вывод данных
- •6.10. Обработка файлов
- •6.11. Вычисление арифметических выражений
- •6.12. Сравнение чисел
- •6.13. Наблюдение за выполнением программы на Прологе
- •Глава 7. Еще несколько примеров программ
- •7.1. Словарь в виде упорядоченного дерева
- •7.2. Поиск в лабиринте
- •7.3. Ханойские башни
- •7.4. Справочник комплектующих деталей
- •7.5. Обработка списков
- •7.6. Представление и обработка множеств
- •7.7. Сортировка
- •7.8. Использование базы данных: random, генатом, найтивсе
- •Генератор случайных чисел (random)
- •Генератор имен (генатом)
- •Генератор списков структур (найтивсе)
- •7.9. Поиск по графу
- •7.10. Просеивай Двойки, Просеивай Тройки
- •7.11. Символьное дифференцирование
- •7.12. Отображение структур и преобразование деревьев
- •7.13. Применение предикатов clause и retract
- •Глава 8. Отладка пролог-программ
- •8.1. Расположение текстов программ
- •8.2. Типичные ошибки
- •8.3. Модель трассировки
- •8.4. Трассировка и контрольные точки
- •Выдача информации о цели
- •Выдача информации о предшественниках
- •Изменение уровня трассировки
- •Вмешательство в процесс согласования цели
- •Другие команды
- •Заключение
- •8.5. Фиксация ошибок
- •Глава 9. Использование грамматических правил в прологе
- •9.1. Проблема синтаксического анализа
- •9.2. Описание синтаксического анализа на языке Пролог
- •9.3. Запись грамматических правил в Прологе
- •9.4. Присоединение дополнительных аргументов
- •9.5. Введение дополнительных условий
- •9.6. Заключение
- •Глава 10. Пролог и математическая логика
- •10.1. Краткое введение в исчисление предикатов
- •10.2. Приведение формул к стандартной форме
- •Этап 1 - исключение импликаций и зквивалентностей
- •Этап 2 - перенос отрицания внутрь формулы
- •Этап 3 - сколемизация
- •Этап 4 - вынесение кванторов общности в начало формулы
- •Этап 5 - использование дистрибутивных законов для & и #
- •Этап 6 - выделение множества дизъюнктов
- •10.3. Форма записи дизъюнктов
- •10.4. Принцип резолюций и доказательство теорем
- •10.5. Хорновские дизъюнкты
- •10.6. Пролог
- •10.7. Пролог и логическое программирование
- •Глава 11. Программные проекты на прологе
- •11.1. Простые проекты
- •11.2. Более сложные проекты
- •Приложение а. Ответы к некоторым упражнениям
- •Приложение в. Программа приведения формул исчисления предикатов к стандартной форме
- •Этап 1 - исключение импликаций
- •Этап 2 - перенос отрицания внутрь формулы
- •Этап 3 - сколемизация
- •Этап 4 - вынесение кванторов общности в начало формулы
- •Этап 5 - использование дистрибутивных законов для. & и #
- •Этап 6 - выделение множества дизъюнктов
- •Печать утверждений
- •Приложение с. Различные версии языка пролог
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Компиляция
- •Специальные встроенные предикаты
- •Средства отладки
- •Приложение d. Пролог для эвм dec system-10
- •Пример сеанса работы
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Компиляция
- •Различия во встроенных предикатах
- •Дополнительные встроенные предикаты
- •Средства отладки
- •Литература
- •Приложение е. Микро-пролог
- •Пример сеанса работы
- •Синтаксис
- •Различные ограничения
- •Возможности окружения
- •Специальные встроенные предикаты
- •Средства отладки
- •Литература
- •Приложение f. Система мпролог[19]
- •Пример сеанса работы
- •Синтаксис
- •Модульность
- •Компоненты системы мПролог
- •Различные ограничения
- •Дополнительные встроенные предикаты
- •Средства отладки
- •Литература
- •Примечания
2.4. Равенство и установление соответствия
В Прологе существует особый предикат равенство, являющийся инфиксным оператором, обозначаемым литерой '='. Когда делается попытка доказать согласованность с базой данных целевого утверждения
?- X = Y.
(произносится X равно Y), Пролог пытается установить соответствие между X и Y; целевое утверждение «доказуемо», если такое соответствие имеется. Это действие можно представить себе как попытку сделать X и Y равными. Предикат равенства является встроенным, т. е. он уже определен в Пролог-системе. Предикат равенства работает так, словно определен следующий факт: X = X.
Внутри всякого утверждения X всегда равно X, и это свойство использовано нами при определении предиката равенства.
При согласовании с базой данных цели вида X = Y, где X и Y – любые термы, в которых могут содержаться неконкретизированные переменные, действуют следующие правила:
• если X представляет собой неконкретизированную переменную, а переменная Y конкретизирована (какое именно значение ей дано, неважно), то X и Y равны. Кроме того, X станет конкретизированной – ей будет дано то же значение, что и Y. Например, следующий вопрос приведет к тому, что X будет присвоено значение в виде структуры: ехать(клерк, велосипед):
?- ехать(клерк, велосипед) = X.
• целые числа и атомы всегда равны самим себе. Например, попытки согласовать следующие целевые утверждения дадут результаты, показанные справа:
полицейский = полицейский /* верно */
бумага = карандаш /* ложно */
1066=1066 /* верно */
1206=1583 /* ложно */
• Две структуры равны, если они имеют один и тот же функтор и одинаковое число аргументов, причем все соответствующие аргументы равны. Например, при согласовании следующего целевого утверждения X будет присвоено конкретное значение велосипед:
ехать(клерк,велосипед) = ехать(клерк,Х).
Структуры могут быть вложены одна в другую на любую глубину. Если такие вложенные структуры проверяются на равенство, проверка займет больше времени, поскольку необходимо проверить все структуры. Попытка согласовать следующую цель:
a(b,C,d(e,F,g(h,i,J)))=a(B,c,d(E,f,g(H,i,j))).
будет успешной, а переменные В, С, F, Е, J будут конкретизированы, им будут присвоены соответственно значения b, с, f, e, j. Что произойдет, если мы попытаемся приравнять две неконкретизированные переменные? Это специальный случай первого из вышеприведенных правил. Так, цель будет согласована и две переменные станут сцепленными. Если две переменные сцеплены, то при конкретизации одной из них второй переменной будет автоматически присвоено то же самое конкретное значение, что и первой. Таким образом, в следующем правиле второй аргумент будет конкретизирован так же, как первый:
ничего_не_делать(Х,Y):- Х = Y.
Целевое утверждение X=Y всегда верно (т. е. согласуется с базой данных), если один из аргументов неконкретизирован. Более простой способ записи такого правила заключается в использовании того факта, что переменная равна самой себе:
ничего_не_делать(Х,Х).
Пролог предоставляет также предикат '\=' соответствующий не равно. Целевое утверждение Х\=Y верно в тех случаях, когда не доказуемо утверждение X=Y, и наоборот. Таким образом, Х\=Y означает, что X не может быть сделано равным Y.
Упражнение 2.1. Скажите, верны ли следующие целевые утверждения, какие переменные будут конкретизированы и какие им будут даны значения:
пилоты(А, Лондон) = пилоты(лондон, париж)
точка(Х,Y,Z) = точка(Х1,Y1,Z1) = слово(буква)
существительное(альфа) = альфа
'викарий' = викарий
f(X,X) = f(a,b)
f(X,a(b,c)) = f(Z,a(Z,c)
