Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:ТВиМС лаб раб.doc
X
- •I События и вероятности
- •1. Случайный эксперимент. Пространство элементарных исходов. События, действия над ними.
- •Дважды бросается монета. Описать:
- •2. Стрелок, имея 4 патрона, стреляет до первого попадания в цель. Опишите пространство элементарных событий.
- •Упражнения.
- •6. Событие а заключается в том, что число, взятое наугад из отрезка [ -10, 10 ], не больше 4, а событие в – модуль этого числа не превосходит 2. Что означают события:
- •2. Элементы комбинаторики в теории вероятностей.
- •Решение задач.
- •1. Расписание одного дня состоит из 5 уроков. Определить число вариантов расписания при выборе из 11 предметов.
- •2. В шахматном турнире участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?
- •3. Порядок выступления 7 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?
- •4. В конкурсе по 5 номинациям участвуют 10 кинофильмов. Сколько существует вариантов распределения призов, если по каждой номинации установлены: а) различные призы; б) одинаковые призы?
- •Упражнения.
- •Лабораторная работа №1
- •1. Классическое определение вероятности.
- •2. Геометрическая вероятность.
- •Упражнения.
- •Лабораторная работа №2
- •1. Теорема сложения вероятностей. Для любых соотношений а и в справедлива теорема сложения вероятностей:
- •2. Условная вероятность события. Независимость событий.
- •3. Теорема умножения вероятностей.
- •4. Формула полной вероятности. Формулы Байеса.
- •1) Найдите вероятность того, что поступивший в торговую фирму телевизор не потребует ремонта в течение гарантийного срока.
- •2) Проданный телевизор потребовал ремонта в течение гарантийного срока. От какого поставщика вероятнее всего поступил этот телевизор?
- •1) По условию
- •Упражнения.
- •1. Формула Бернулли.
- •Приближенные формулы для вычисления Pn(m).
- •Локальная и интегральная формулы Муавра – Лапласа.
- •1. Функция – нечетная, то есть ;
- •2. Функция ― монотонно возрастает, причем при
- •2. Частость события a заключена в пределах от до
- •2. A) По условию
- •2. Г) Наивероятнейшее число проданных акций по первоначально заявленной цене (по формуле 2 из II).
- •2) Б) Событие “не будет повреждено хотя бы 9997 из 10000” равносильно событию “будет повреждено не более 3 из 10000”
- •Упражнения
- •Математическое ожидание дискретной случайной величины.
- •4. Если и — независимые случайные величины, то
- •Функция распределения случайной величины.
- •2. Функция распределения f(X) есть неубывающая функция на всей числовой прямой.
- •4. Вероятность попадания случайной величины в интервал равна приращению ее функции распределения, то есть
- •Упражнения.
- •14. На двух автоматических станках производятся одинаковые изделия. Даны законы распределения числа бракованных изделий, производимых в течение смены на каждом из них:
- •3. Если случайные величины X и Yимеют линейную связь, то есть
- •Решение задач.
- •Трижды бросается игральная кость. Случайная величина
- •Решение.
- •2. Система случайных величин (X,y) подчинена закону распределения с плотностью
- •Решение
- •3. Плотность распределения системы двух случайных величин X и y задана выражением
- •Решение.
- •Упражнения
- •1. Закон распределения дискретной двумерной случайной величины (X,y) задан таблицей
- •Решение задач.
- •Упражнения.
- •Для заметок
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
